4 resultados para 180122 Legal Theory Jurisprudence and Legal Interpretation
Resumo:
This article examines the music used by the Orange Order, in its public parades, more commonly referred to as “Orange Walks.” The Orange Order is an exclusively Protestant fraternal organization, which traces its roots to 1690 and the victory of the Protestant Prince William of Orange over the Catholic King James. Yet, as in Northern Ireland, many consider the group to be sectarian and view its public celebrations as a display of ethno-religious triumphalism. This article explores the extra-musical factors associated with Orangeism’s most iconic song, “The Sash My Father Wore,” how other groups have misappropriated the song, and how this has distorted its meaning and subsequent interpretation.
Recent statistics have shown that Glasgow hosts more Orange parades each year than in Belfast and Derry/Londonderry combined, yet while there have been many anthropological and ethnomusicological studies of Northern Ireland’s Orange parades, very little research has focused on similar traditions in Scotland. This article seeks to address that gap in the literature and is intended as a preparatory study, laying the groundwork for further analysis.
Resumo:
Background: We sought to describe the theory used to design treatment adherence interventions, the content delivered, and the mode of delivery of these interventions in chronic respiratory disease. Methods: We included randomized controlled trials of adherence interventions (compared to another intervention or control) in adults with chronic respiratory disease (8 databases searched; inception until March 2015). Two reviewers screened and extracted data: post-intervention adherence (measured objectively); behavior change theory, content (grouped into psychological, education and self-management/supportive, telemonitoring, shared decision-making); and delivery. “Effective” studies were those with p < 0.05 for adherence rate between groups. We conducted a narrative synthesis and assessed risk of bias. Results: 12,488 articles screened; 46 included studies (n = 42,91% in OSA or asthma) testing 58 interventions (n = 27, 47% were effective). Nineteen (33%) interventions (15 studies) used 12 different behavior change theories. Use of theory (n = 11,41%) was more common amongst effective interventions. Interventions were mainly educational, self-management or supportive interventions (n = 27,47%). They were commonly delivered by a doctor (n = 20,23%), in face-to-face (n = 48,70%), one-to-one (n = 45,78%) outpatient settings (n = 46,79%) across 2–5 sessions (n = 26,45%) for 1–3 months (n = 26,45%). Doctors delivered a lower proportion (n = 7,18% vs n = 13,28%) and pharmacists (n = 6,15% vs n = 1,2%) a higher proportion of effective than ineffective interventions. Risk of bias was high in >1 domain (n = 43, 93%) in most studies. Conclusions: Behavior change theory was more commonly used to design effective interventions. Few adherence interventions have been developed using theory, representing a gap between intervention design recommendations and research practice.
Resumo:
Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.