4 resultados para 17 m-Lake


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it ‘Lake Kryos’ after a nearby depression. This lake is filled with magnesium chloride (MgCl2)-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater–Kryos brine interface and managed to recover mRNA from the 2.27–3.03 MMgCl2 layer (equivalent to 0.747–0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related toDesulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27–3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European “Community Bureau of Reference” (BCR) sequential extraction procedure, diffusive gradient in thin-films technique (DGT), and physiologically based extraction test were applied to assess metal bioavailability in sediments of Lake Taihu (n = 13). Findings from the three methods showed that Cd was a significant problem in the western lake whereas Cu, Zn, and Ni pollution was most severe in the northern lake. Results from the sequential extraction revealed that more than 50 % of the Cu and Zn were highly mobile and defined within the extractable fraction (AS1 + FM2 + OS3) in the majority of the sediments, in contrast extractable fractions of Ni and Cd were lower than 50 % in most of the sampling sites. Average Cu, Zn, Ni, and Cd bioaccessibilities were <50 % in the gastric phase. Zn and Cd bioaccessibility in the intestinal phase was ∼50 % lower than the gastric phase while bioaccessibilities of Cu and Ni were 47–57 % greater than the gastric phase. Linear regression analysis between DGT and BCR measurements indicated that the extractable fractions (AS1 + FM2 + OS3) in the reducing environment were the main source of DGT uptake, suggesting that DGT is a good in situ evaluation tool for metal bioavailability in sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about long-term ecological responses in lakes following red mud pollution. Among red mud contaminants, arsenic (As) is of considerable concern. Determination of the species of As accumulated in aquatic organisms provides important information about the biogeochemical cycling of the element and transfer through the aquatic food-web to higher organisms. We used coupled ion chromatography and inductively coupled plasma mass spectrometry (ICP-MS) to assess As speciation in tissues of five macrophyte taxa in Kinghorn Loch, UK, 30 years following the diversion of red mud pollution from the lake. Toxic inorganic As was the dominant species in the studied macrophytes, with As species concentrations varying with macrophyte taxon and tissue type. The highest As content measured in roots of Persicaria amphibia (L.) Gray (87.2 mg kg-1) greatly exceeded the 3 - 10 mg kg-1 range suggested as a potential phytotoxic level. Accumulation of toxic As species by plants suggested toxicological risk to higher organisms known to utilise macrophytes as a food source.