62 resultados para 140304 Panel Data Analysis
Resumo:
Successful innovation depends on knowledge – technological, strategic and market related. In this paper we explore the role and interaction of firms’ existing knowledge stocks and current knowledge flows in shaping innovation success. The paper contributes to our understanding of the determinants of firms’ innovation outputs and provides new information on the relationship between knowledge stocks, as measured by patents, and innovation output indicators. Our analysis uses innovation panel data relating to plants’ internal knowledge creation, external knowledge search and innovation outputs. Firm-level patent data is matched with this plant-level innovation panel data to provide a measure of firms’ knowledge stock. Two substantive conclusions follow. First, existing knowledge stocks have weak negative rather than positive impacts on firms’ innovation outputs, reflecting potential core-rigidities or negative path dependencies rather than the accumulation of competitive advantages. Second, knowledge flows derived from internal investment and external search dominate the effect of existing knowledge stocks on innovation performance. Both results emphasize the importance of firms’ knowledge search strategies. Our results also re-emphasize the potential issues which arise when using patents as a measure of innovation.
Resumo:
We present an analysis of the data from our Swedish-ESO Submillimetre Telescope molecular line survey in the 1.3 mm band of the N, M, and NW positions in the Sgr B2 molecular cloud. The line emissions from 42 molecular species, and some of their isotopomers, were analyzed assuming a single temperature and a homogeneous source. In cases where a source size much smaller than the antenna beam (23
Resumo:
The consideration of the limit theory in which T is fixed and N is allowed to go to infinity improves the finite-sample properties of the tests and avoids the imposition of the relative rates at which T and N go to infinity.
Resumo:
This paper investigates the performance of the tests proposed by Hadri and by Hadri and Larsson for testing for stationarity in heterogeneous panel data under model misspecification. The panel tests are based on the well known KPSS test (cf. Kwiatkowski et al.) which considers two models: stationarity around a deterministic level and stationarity around a deterministic trend. There is no study, as far as we know, on the statistical properties of the test when the wrong model is used. We also consider the case of the simultaneous presence of the two types of models in a panel. We employ two asymptotics: joint asymptotic, T, N -> infinity simultaneously, and T fixed and N allowed to grow indefinitely. We use Monte Carlo experiments to investigate the effects of misspecification in sample sizes usually used in practice. The results indicate that the assumption that T is fixed rather than asymptotic leads to tests that have less size distortions, particularly for relatively small T with large N panels (micro-panels) than the tests derived under the joint asymptotics. We also find that choosing a deterministic trend when a deterministic level is true does not significantly affect the properties of the test. But, choosing a deterministic level when a deterministic trend is true leads to extreme over-rejections. Therefore, when unsure about which model has generated the data, it is suggested to use the model with a trend. We also propose a new statistic for testing for stationarity in mixed panel data where the mixture is known. The performance of this new test is very good for both cases of T asymptotic and T fixed. The statistic for T asymptotic is slightly undersized when T is very small (