3 resultados para 1303
Resumo:
In the context of products from certain regions or countries being banned because of an identified or non-identified hazard, proof of geographical origin is essential with regard to feed and food safety issues. Usually, the product labeling of an affected feed lot shows origin, and the paper documentation shows traceability. Incorrect product labeling is common in embargo situations, however, and alternative analytical strategies for controlling feed authenticity are therefore needed. In this study, distillers' dried grains and solubles (DDGS) were chosen as the product on which to base a comparison of analytical strategies aimed at identifying the most appropriate one. Various analytical techniques were investigated for their ability to authenticate DDGS, including spectroscopic and spectrometric techniques combined with multivariate data analysis, as well as proven techniques for authenticating food, such as DNA analysis and stable isotope ratio analysis. An external validation procedure (called the system challenge) was used to analyze sample sets blind and to compare analytical techniques. All the techniques were adapted so as to be applicable to the DDGS matrix. They produced positive results in determining the botanical origin of DDGS (corn vs. wheat), and several of them were able to determine the geographical origin of the DDGS in the sample set. The maintenance and extension of the databanks generated in this study through the analysis of new authentic samples from a single location are essential in order to monitor developments and processing that could affect authentication.
Resumo:
The racemic tertiary cathinones N,N-dimethylcathinone (1), N,N-diethylcathinone (2) and 2-(1-pyrrolidinyl)-propiophenone (3) have been prepared in reasonable yield and characterized using NMR and mass spectroscopy. HPLC indicates that these compounds are isolated as the anticipated racemic mixture. These can then be co-crystallized with (+)-O,O′-di-p-toluoyl-d-tartaric, (+)-O,O′-dibenzoyl-d-tartaric and (-)-O,O′-dibenzoyl-l-tartaric acids giving the single enantiomers S and R respectively of 1, 2 and 3, in the presence of sodium hydroxide through a dynamic kinetic resolution. X-ray structural determination confirmed the enantioselectivity. The free amines could be obtained following basification and extraction. In methanol these are reasonably stable for the period of several hours, and their identity was confirmed by HPLC and CD spectroscopy.
Resumo:
Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these "Poly-SERS" films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.