3 resultados para 11Q DELETION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The prognostic significance of ATM mutations in chronic lymphocytic leukemia (CLL) is unclear. We assessed their impact in the context of a prospective randomized trial. PATIENTS AND METHODS: We analyzed the ATM gene in 224 patients treated on the Leukemia Research Fund Chronic Lymphocytic Leukemia 4 (LRF-CLL4) trial with chlorambucil or fludarabine with and without cyclophosphamide. ATM status was analyzed by denaturing high-performance liquid chromatography and was related to treatment response, survival, and the impact of TP53 alterations for the same patient cohort. RESULTS: We identified 36 ATM mutations in 33 tumors, 16 with and 17 without 11q deletion. Mutations were associated with advanced disease stage and involvement of multiple lymphoid sites. Patients with both ATM mutation and 11q deletion showed significantly reduced progression-free survival (median, 7.4 months) compared with those with ATM wild type (28.6 months), 11q deletion alone (17.1 months), or ATM mutation alone (30.8 months), but survival was similar to that in patients with monoallelic (6.7 months) or biallelic (3.4 months) TP53 alterations. This effect was independent of treatment, immunoglobulin heavy chain variable gene (IGHV) status, age, sex, or disease stage. Overall survival for patients with biallelic ATM alterations was also significantly reduced compared with those with ATM wild type or ATM mutation alone (median, 42.2 v 85.5 v 77.6 months, respectively). CONCLUSION: The combination of 11q deletion and ATM mutation in CLL is associated with significantly shorter progression-free and overall survival following first-line treatment with alkylating agents and purine analogs. Assessment of ATM mutation status in patients with 11q deletion may influence the choice of subsequent therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PurposeTP53 mutations have been described in chronic lymphocytic leukemia (CLL) and have been associated with poor prognosis in retrospective studies. We aimed to address the frequency and prognostic value of TP53 abnormalities in patients with CLL in the context of a prospective randomized trial.Patients and MethodsWe analyzed 529 CLL samples from the LRF CLL4 (Leukaemia Research Foundation Chronic Lymphocytic Leukemia 4) trial (chlorambucil v fludarabine with or without cyclophosphamide) at the time of random assignment for mutations in the TP53 gene. TP53 mutation status was correlated with response and survival data.ResultsMutations of TP53 were found in 40 patients (7.6%), including 25 (76%) of 33 with 17p deletion and 13 (3%) of 487 without that deletion. There was no significant correlation between TP53 mutations and age, stage, IGHV gene mutations, CD38 and ZAP-70 expression, or any other chromosomal abnormality other than 17p deletion, in which concordance was high (96%). TP53 mutations were significantly associated with poorer overall response rates (27% v 83%; P <.001) and shorter progression-free survival (PFS) and overall survival (OS; 5-year PFS: 5% v 17%; 5-year OS: 20% v 59%; P <.001 for both). Multivariate analysis that included baseline clinical variables, treatment, and known adverse genetic factors confirmed that TP53 mutations have added prognostic value.ConclusionTP53 mutations are associated with impaired response and shorter survival in patients with CLL. Analysis of TP53 mutations should be performed in patients with CLL who have progressive disease before starting first-line treatment, and those with mutations should be selected for novel experimental therapies. J Clin Oncol 29: 2223-2229. (C) 2011 by American Society of Clinical Oncology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Myeloma is a clonal malignancy of plasma cells. Poor-prognosis risk is currently identified by clinical and cytogenetic features. However, these indicators do not capture all prognostic information. Gene expression analysis can be used to identify poor-prognosis patients and this can be improved by combination with information about DNA-level changes. EXPERIMENTAL DESIGN: Using single nucleotide polymorphism-based gene mapping in combination with global gene expression analysis, we have identified homozygous deletions in genes and networks that are relevant to myeloma pathogenesis and outcome. RESULTS: We identified 170 genes with homozygous deletions and corresponding loss of expression. Deletion within the "cell death" network was overrepresented and cases with these deletions had impaired overall survival. From further analysis of these events, we have generated an expression-based signature associated with shorter survival in 258 patients and confirmed this signature in data from two independent groups totaling 800 patients. We defined a gene expression signature of 97 cell death genes that reflects prognosis and confirmed this in two independent data sets. CONCLUSIONS: We developed a simple 6-gene expression signature from the 97-gene signature that can be used to identify poor-prognosis myeloma in the clinical environment. This signature could form the basis of future trials aimed at improving the outcome of poor-prognosis myeloma.