12 resultados para 110-671B
Resumo:
The atomic structures of gold supported on (111) and (110) surfaces of CeO2 have been studied using density-functional theory calculations. A single Au atom is placed on three adsorption sites on the surfaces; the stoichiometric surfaces, an oxygen vacancy and a Ce-vacancy. It is found that (i) the Au adsorption energies are in the following order: E-ad(Ce-vacancy) > E-ad(O-vacancy) > E-ad(stoichiometric surface); and (ii) the Au atom adsorption on the Ce-vacancy activates O atoms nearby. One 0 atom is less stable than that in O-2 in the gas phase and another O atom is much easier to remove compared to that of the stoichiometric surfaces. These results suggest that the Au adsorption on Ce-vacancies not only creates an O-vacancy but also activates an O atom nearby. This provides a piece of direct evidence that Au adsorption on a Ce-vacancy may be responsible for some unique catalytic properties of Au/CeO2. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O-2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O-2 adsorption on TiO2; (ii) the effect of OH group on the O-2 adsorption is surprisingly long-ranged; and (iii) O-2 can also diffuse along the channel of Ti (5c) atoms on TiO2(1 10), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O-2 is supplied by O-2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O-2, and the O-2 adsorption energy depends linearly on the 02 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.
Resumo:
The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.
Resumo:
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Resumo:
The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.
Resumo:
Ab initio total energy calculations have been performed for CO chemisorption on Pd(110). Local density approximation (LDA) calculations yield chemisorption energies which are significantly higher than experimental values but inclusion of the generalised gradient approximation (GGA) gives better agreement. In general, sites with higher coordination of the adsorbate to surface atoms lead to a larger degree of overbinding with LDA, and give larger corrections with GGA. The reason is discussed using a first-order perturbation approximation. It is concluded that this may be a general failure of LDA for chemisorption energy calculations. This conclusion may be extended to many surface calculations, such as potential energy surfaces for diffusion.
Resumo:
The structure of the (2 X 1)CO-Pd(110) surface phase has been determined by LEED intensity analysis. The CO molecule is found to be adsorbed in an atop site, tilted by 11-degrees +/- 4-degrees with respect to the surface normal, with a C-O bond length of 1.16 +/- 0.04 angstrom. Interestingly, the C-O vibrational frequency for this system (2003 cm-1) is virtually identical to the frequency observed for the (2 X 1)CO-Ni(110) surface phase (1998 cm-1) which a previous LEED study has shown involves bridge bound CO molecules. The result indicates that care must be taken in assigning site symmetries on the basis of C-O stretching frequencies alone.
Resumo:
Molecularly adsorbed CO on Pd{110} has been shown (R. Raval et al., Chem. Phys. Lett. 167 (1990) 391, ref. [1]) to induce a substantial reconstruction of the surface in the coverage range 0.3 <theta less-than-or-equal-to 0.75. Throughout this coverage range, the adsorbate-covered reconstructed surface exhibits a (4 x 2) LEED pattern. However, the exact nature of the reconstruction remains uncertain. We have conducted a LEED I(E) "fingerprinting" analysis of the CO/Pd{110}-(4 x 2) structure in order to establish the type of reconstruction induced in the metal surface. This study shows that the LEED I(E) profiles of the integral order and appropriate half-order beams of the CO/Pd{110}-(4 x 2) pattern closely resemble the I(E) profiles theoretically calculated for a Pd{110}-(1 x 2) missing-row structure. Additionally, there is a strong resemblance to the experimental LEED I(E) profiles for the Cs/Pd{110}-(1 x 2) structure which has also been shown to exhibit the missing-row structure. On the basis of this evidence we conclude that the CO/Pd{110}-(4 x 2) LEED pattern arises from a missing-row reconstruction of the Pd{110} surface which gives rise to a strong underlying (1 x 2) pattern plus a poorly ordered CO overlayer which produces weak, diffuse fourth-order spots in the LEED pattern.