6 resultados para 101-628


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bevacizumab has been suggested to have similar effectiveness to ranibizumab for treatment of neovascular age-related macular degeneration. The Inhibition of VEGF in Age-related choroidal Neovascularisation (IVAN) trial was designed to compare these drugs and different regimens. Here, we report the findings at the prespecified 2-year timepoint. Methods: In a multicentre, 2×2 factorial, non-inferiority randomised trial, we enrolled adults aged at least 50 years with active, previously untreated neovascular age-related macular degeneration and a best corrected distance visual acuity (BCVA) of at least 25 letters from 23 hospitals in the UK. Participants were randomly assigned (1:1:1:1) to intravitreal injections of ranibizumab (0·5 mg) or bevacizumab (1·25 mg) in continuous (every month) or discontinuous (as needed) regimens, with monthly review. Study participants and clinical assessors were masked to drug allocation. Allocation to continuous or discontinuous treatment was masked up to 3 months, at which point investigators and participants were unmasked. The primary outcome was BCVA at 2 years, with a prespecified non-inferiority limit of 3·5 letters. The primary safety outcome was arterial thrombotic event or hospital admission for heart failure. Analyses were by modified intention to treat. This trial is registered, number ISRCTN92166560. Findings: Between March 27, 2008, and Oct 15, 2010, 628 patients underwent randomisation. 18 were withdrawn; 610 received study drugs (314 ranibizumab; 296 bevacizumab) and were included in analyses. 525 participants reached the visit at 2 years: 134 ranibizumab in continuous regimen, 137 ranibizumab in discontinuous regimen, 127 bevacizumab in continuous regimen, and 127 bevacizumab in discontinuous regimen. For BCVA, bevacizumab was neither non-inferior nor inferior to ranibizumab (mean difference -1·37 letters, 95% CI -3·75 to 1·01; p=0·26). Discontinuous treatment was neither non-inferior nor inferior to continuous treatment (-1·63 letters, -4·01 to 0·75; p=0·18). Frequency of arterial thrombotic events or hospital admission for heart failure did not differ between groups given ranibizumab (20 [6%] of 314 participants) and bevacizumab (12 [4%] of 296; odds ratio [OR] 1·69, 95% CI 0·80-3·57; p=0·16), or those given continuous (12 [4%] of 308) and discontinuous treatment (20 [7%] of 302; 0·56, 0·27-1·19; p=0·13). Mortality was lower with continuous than discontinuous treatment (OR 0·47, 95% CI 0·22-1·03; p=0·05), but did not differ by drug group (0·96, 0·46-2·02; p=0·91). Interpretation: Ranibizumab and bevacizumab have similar efficacy. Reduction in the frequency of retreatment resulted in a small loss of efficacy irrespective of drug. Safety was worse when treatment was administered discontinuously. These findings highlight that the choice of anti-VEGF treatment strategy is less straightforward than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.