15 resultados para 1-HEXENE POLYMERIZATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rh-2(cod)(2)(mu(2)-dppm)(mu(2)-Cl)]BF4 (1) rearranges under carbon monoxide to give [Rh-3(mu(2)-dppm)(2)-(mu(2)-CO)(3)(K-1-CO)(3)]BF4 (2). Complex 2 has been structurally characterized by single crystal X-ray crystallography. The hydroformylation activities of 1 and 2 were compared for substrates styrene and 1-hexene and the activity of 2 found to be unexpectedly high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of alpha,beta-unsaturated aldehydes and nitriles of significant interest in the fragrance industry have been prepared using Grubbs' catalysts in cross-metathesis reactions of electron-deficient olefins (i.e., acrolein, crotonaldehyde, methacrolein, and acrylonitrile) with various 1-alkenes, including 1-decene, 1-octene, 1-hexene and 2-allyloxy-6-methylheptane. The latter is of particular interest, as it has not previously being used as a substrate in cross-metathesis reactions and allows access to valuable intermediates for the synthesis of new fragrances. Most reactions gave good selectivity of the desired CM product (>= 90%). Detailed optimisation and mechanistic studies have been performed on the cross-metathesis of acrolein with 1-decene. Recycling of the catalyst has been attempted using ionic liquids. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the extraction of C5-C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number using silver(I)/N,N-dimethylbenzamide bis(trifluoromethylsulfonyl)imide ([Ag(DMBA)2][Tf2N]) or silver(I)/propylamine bis(trifluoromethylsulfonyl)imide ([Ag(PrNH2)2][Tf2N]) as the extracting agent. The separation performance of the system increased with increasing chain length. [Ag(DMBA)2][Tf2N] appeared to outperform [Ag(PrNH2)2][Tf2N] in terms of both selectivity and distribution coefficient. The [Ag(DMBA)2][Tf2N] system was successfully modeled using the universal quasi-chemical activity coefficient (UNIQUAC) model. These results support the potential future development of amine/amide-based ligands for producing soluble silver complexes useful for the separation of olefins from paraffins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, 1-hexene was extracted from its mixtures with n-hexane in varying ratios using a task specific ionic liquid. Herein, the ionic liquid (IL) 1-butyl-3-methylimidazolium nitrate, [BMIM][NO3], was used and examined with and without the addition of a metal salt. The impact of water on both selectivity and distribution coefficient was also tested. Four potential metal salts were investigated, the results of which demonstrate that the dissolution of transition-metal salts in the IL improves the separation of 1-hexene from n-hexane through metal-olefin complexation. Additionally, the presence of water in IL solutions containing metal salt enhances this selectivity. Finally, UNIFAC was used to correlate the experimental LLE data with good accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c(3) reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c(3) as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c(3) required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c(3). The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and-for sufficiently high values of c(3)-there is a reversible polymer-gel transformation at a density-dependent floor temperature. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional calculations of the structure, potential energy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate (BPA-PC) provide the basis for a model describing the ring-opening polymerization of its cyclic oligomers by nucleophilic molecules. Monte Carlo simulations using this model show a strong tendency to polymerize that is increased by increasing density and temperature, and is greater in 3D than in 2D. Entropy in the distribution of inter-particle bonds is the driving force for chain formation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ring opening polymerization of bisphenol A polycarbonate is studied by Monte Carlo simulations of a model comprising a fixed number of Lennard-Jones particles and harmonic bonds [J. Chem. Phys. 115, 3895 (2001)]. Bond interchanges produced by a low concentration (0.10%less than or equal toc(a)less than or equal to0.36%) of chemically active particles lead to equilibrium polymerization. There is a continuous transition in both 2D and 3D from unpolymerized cyclic oligomers at low density to a system of linear chains at high density, and the polymeric phase is much more stable in three dimensions than in two. The steepness of the polymerization transition increases rapidly as c(a) decreases, suggesting that it is discontinuous in the limit c(a)-->0. The transition is entropy driven, since the average potential energy increases systematically upon polymerization, and there is a steady decline in the degree of polymerization as the temperature is lowered. The mass distribution functions for open chains and for rings are unimodal, with exponentially decaying tails that can be fitted by Zimm-Schulz functions and simpler exponential forms. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model of the polymerization of ring oligomers of bisphenol A polycarbonate (BPA-PC) is used to investigate the influence of dimensionality (2D or 3D), density and temperature on the size distribution of the polymer chains. The polymerization step is catalyzed by a single active particle, conserves the number and type of the chemical bonds, and occurs without a significant gain in either potential energy or configurational entropy. Monte Carlo and molecular dynamics simulations show that polymerization of cyclic oligomers occurs readily at high density and is driven by the entropy associated with the distribution of interparticle bonds. Polymerization competes at lower densities with long range diffusion, which favors small molecular species, and is prevented if the system is sufficiently dilute. Polymerization occurs in 2D via a weakly first order transition as a function of density and is characterized by low hysteresis and large fluctuations in the size of polymer chains. Polymerization occurs more readily in 3D than in 2D, and is favored by increasing temperature, as expected for an entropy-driven process. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of metathesis polymers and copolymers have been formed and their structures were analysed by C-13 NMR spectroscopy. Noble metal and non-noble metal salt catalysts are distinguished by their behaviour in various solvents. Thus, in phenolic solvents, the former class produce alternating copolymers from cyclopentene and norbornene, while the latter are unaffected and produce random copolymers. In contrast, ether solvents have the effect of markedly increasing the cis content of polymers from the latter catalysts while the former are unaffected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost alternating copolymers of bicyclo[2.2.1]hept-2-ene and cyclopentene have been formed by ring-opening metathesis polymerization using a RuCl3-phenol catalyst system; this highly novel result is attributed to differential steric influences exerted by a hydrogen-bonded solvent cage which encloses the catalyst site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-typable Haemophilus influenzae (NTHi) is a common commensal of the human nasopharynx, but causes opportunistic infection when the respiratory tract is compromised by infection or disease. The ability of NTHi to invade epithelial cells has been described, but the underlying molecular mechanisms are poorly characterized. We previously determined that NTHi promotes phosphorylation of the serine-threonine kinase Akt in A549 human lung epithelial cells, and that Akt phosphorylation and NTHi cell invasion are prevented by inhibition of phosphoinositide 3-kinase (PI3K). Because PI3K-Akt signalling is associated with several host cell networks, the purpose of the current study was to identify eukaryotic molecules important for NTHi epithelial invasion. We found that inhibition of Akt activity reduced NTHi internalization; differently, bacterial entry was increased by phospholipase C?1 inhibition but was not affected by protein kinase inhibition. We also found that a5 and ß1 integrins, and the tyrosine kinases focal adhesion kinase and Src, are important for NTHi A549 cell invasion. NTHi internalization was shown to be favoured by activation of Rac1 guanosine triphosphatase (GTPase), together with the guanine nucleotide exchange factor Vav2 and the effector Pak1. Also, Pak1 might be associated with inactivation of the microtubule destabilizing agent Op18/stathmin, to facilitate microtubule polymerization and NTHi entry. Conversely, inhibition of RhoA GTPase and its effector ROCK increased the number of internalized bacteria. Src and Rac1 were found to be important for NTHi-triggered Akt phosphorylation. An increase in host cyclic AMP reduced bacterial entry, which was linked to protein kinase A. These findings suggest that NTHi finely manipulates host signalling molecules to invade respiratory epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 65-kD microtubule-associated protein (MAP65) family is a family of plant microtubule-bundling proteins. Functional analysis is complicated by the heterogeneity within this family: there are nine MAP65 genes in Arabidopsis thaliana, AtMAP65-1 to AtMAP65-9. To begin the functional dissection of the Arabidopsis MAP65 proteins, we have concentrated on a single isoform, AtMAP65-1, and examined its effect on the dynamics of mammalian microtubules. We show that recombinant AtMAP65-1 does not promote polymerization and does not stabilize microtubules against cold-induced microtubule depolymerization. However, we show that it does induce microtubule bundling in vitro and that this protein forms 25-nm cross-bridges between microtubules. We further demonstrate that the microtubule binding region resides in the C-terminal half of the protein and that Ala409 and Ala420 are essential for the interaction with microtubules. Ala420 is a conserved amino acid in the AtMAP65 family and is mutated to Val in the cytokinesis-defective mutant pleiade-4 of the AtMAP65-3/PLEIADE gene. We show that AtMAP65-1 can form dimers and that a region in the N terminus is responsible for this activity. Neither the microtubule binding region nor the dimerization region alone could induce microtubule bundling, strongly suggesting that dimerization is necessary to produce the microtubule cross-bridges. In vivo, AtMAP65-1 is ubiquitously expressed both during the cell cycle and in all plant organs and tissues with the exception of anthers and petals. Moreover, using an antiserum raised to AtMAP65-1, we show that AtMAP65-1 binds microtubules at specific stages of the cell cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group transfer polymerization (GTP) chemistry was employed for the preparation of polymethacrylate networks of controlled structure (quasi-model networks) of three different types: (a) regular quasi-model networks, in which all polymer chains were linked at their ends, leaving, in principle, no free chain ends, (b) crosslinked star polymer quasi-model networks, in which star polymers were interlinked via half of their chains, letting the other half free (dangling), and (c) shell-crosslinked polymer quasi-model networks, in which the outer part of the network contained polymer arms (dangling chains). Combination of hydrophilic and hydrophobic monomers led to amphiphilic networks whose aqueous swelling behavior was characterized gravimetrically.