3 resultados para 091307 Numerical Modelling and Mechanical Characterisation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.