2 resultados para Àrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In [M. Herty, A. Klein, S. Moutari, V. Schleper, and G. Steinaur, IMA J. Appl. Math., 78(5), 1087–1108, 2013] and [M. Herty and V. Schleper, ZAMM J. Appl. Math. Mech., 91, 763–776, 2011], a macroscopic approach, derived from fluid-dynamics models, has been introduced to infer traffic conditions prone to road traffic collisions along highways’ sections. In these studies, the governing equations are coupled within an Eulerian framework, which assumes fixed interfaces between the models. A coupling in Lagrangian coordinates would enable us to get rid of this (not very realistic) assumption. In this paper, we investigate the well-posedness and the suitability of the coupling of the governing equations within the Lagrangian framework. Further, we illustrate some features of the proposed approach through some numerical simulations.