4 resultados para µ-Rubbing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nociception is the ability to perceive a noxious stimulus and react in a re flexive manner and occurs across a wide range of taxa. However, the ability to experience the associated aversive sensation and feeling, known as pain, is not widely accepted to occur in nonvertebrates. We examined the responses of a decapod crustacean, the prawn, Palaemon elegans, to different noxious stimuli applied to one antenna to assess reflex responses (nociception) and longer-term, specifically directed behavioural responses that might indicate pain. We also examined the effects of benzocaine, a local anaesthetic, on these responses. Noxious stimuli elicited an immediate reflex tail flick response, followed by two prolonged activities, grooming of the antenna and rubbing of the antenna against the side of the tank, with both activities directed specifically at the treated antenna. These responses were inhibited by benzocaine; however, benzocaine did not alter general swimming activity and thus the decline in grooming and rubbing is not due to general anaesthesia. Mechanical stimulation by pinching also resulted in prolonged rubbing, but this was not inhibited by benzocaine. These results indicate an awareness of the location of the noxious stimuli, and the prolonged complex responses indicate a central involvement in their organization. The inhibition by a local anaesthetic is similar to observations on vertebrates and is consistent with the idea that these crustaceans can experience pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All animals face hazards that cause tissue damage and most have nociceptive reflex responses that protect them from such damage. However, some taxa have also evolved the capacity for pain experience, presumably to enhance longterm protection through behavior modification based on memory of the unpleasant nature of pain. In this article I review various criteria that might distinguish nociception from pain. Because nociceptors are so taxonomically widespread, simply demonstrating their presence is not sufficient. Furthermore, investigation of the central nervous system provides limited clues about the potential to experience pain. Opioids and other analgesics might indicate a central modulation of responses but often peripheral effects could explain the analgesia; thus reduction of responses by analgesics and opioids does not allow clear discrimination between nociception and pain. Physiological changes in response to noxious stimuli or the threat of a noxious stimulus might prove useful but, to date, application to invertebrates is limited. Behavior of the organism provides the greatest insights. Rapid avoidance learning and prolonged memory indicate central processing rather than simple reflex and are consistent with the experience of pain. Complex, prolonged grooming or rubbing may demonstrate an awareness of the specific site of stimulus application. Tradeoffs with other motivational systems indicate central processing, and an ability to use complex information suggests sufficient cognitive ability for the animal to have a fitness benefit from a pain experience. Available data are consistent with the idea of pain in some invertebrates and go beyond the idea of just nociception but are not definitive. In the absence of conclusive data, more humane care for invertebrates is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluation of pain in neonates is difficult due to their limited means of communication. The aim was to determine whether behavioural reactions of cry and facial activity provoked by an invasive procedure could be discriminated from responses to non-invasive tactile events. Thirty-six healthy full-term infants (mean age 2.2 h) received 3 procedures in counterbalanced order: intramuscular injection, application of triple dye to the umbilical stub, and rubbing thigh with alcohol. Significant effects of procedure were found for total face activity and latency to face movement. A cluster of facial actions comprised of brow bulging, eyes squeezed shut, deepening of the naso-labial furrow and open mouth was associated most frequently with the invasive procedure. Comparisons between the 2 non-invasive procedures showed more facial activity to thigh swabbing and least to application of triple dye to the umbilical cord. Acoustic analysis of cry showed statistically significant differences across procedures only for latency to cry and cry duration for the group as a whole. However, babies who cried to two procedures showed higher pitch and greater intensity to the injection. There were no significant differences in melody, dysphonation, or jitter. Methodological difficulties for investigators in this area were examined, including criteria for the selection of cries for analysis, and the logical and statistical challenges of contrasting cries induced by different conditions when some babies do not always cry. It was concluded that facial expression, in combination with short latency to onset of cry and long duration of first cry cycle typifies reaction to acute invasive procedures.