6 resultados para "Frameshift"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cribriform-morular variant (C-MV) of papillary thyroid carcinoma (PTC) is a rare and unusual neoplasm composed of multiple histologic components, including cribriform, papillary, solid, tall columnar, and morular patterns. Analyses of gross C-MV of PTC lesions has linked adenomatous polyposis coli (APC) mutations to its pathogenesis; however, the extent of involvement of mutations in the development Of individual components is unclear We report on bidirectional sequencing of the mutation cluster region (codons 1032-1565) of the APC gene in individually laser-microdissected components of a previously unreported C-MV of PTC. A silent Thr1493Thr gene variant was found in all tumoral components, whereas a 5-base-pair frameshift deletion at codon 1309 was identified only in the morules. Neither variant was observed in matched normal thyroid tissue. These results show the histologic components of C-MV of PTC to have some common mutational background, although additional somatic mutations may be involved in the development of morular structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a mutation screening protocol for familial hypercholesterolaemia (FH) patients and to assess genotype/phenotype effects in terms of pre-treatment lipid profiles and presentation of tendon xanthomata (TX). A total of 158 families with clinical definitions of possible (120) or definite (38) FH were studied using a tiered screening protocol. Mutations were identified in 52 families, 44 families showing 23 different LDLR gene defects and eight families showing the common Apo B100 gene defect R3500Q. LDLR defects were detected in various regions of the gene with 56% in the LDL binding domain (exons 2-6) and 37% in the EGF precursor homology domain (exons 7-14). The most common mutations were D461N(7), C210X(5), 932delA(5), and C163Y(4). Frameshift mutations accounted for 20% with nonsense 13%, mis-sense 35%, splice 3%, Apo B 13% and 2% large deletion, 13% of clinically definite FH remained undefined. In conclusion, DNA based diagnosis is possible in 79% (30/38) of clinically definite FH families and of the 120 possible FH families at the start of the screening program, 18% (22/120) now have defined mutations. Overall 60 families from the original 158 meet the clinical and/or genetic criteria for definite FH. Tendon xanthomata were present in only 58% (30/52) of genetically defined FH families, thus limiting its use as a strict diagnostic criteria. Families with low density lipoprotein receptor (LDLR) defects present with higher total and LDL cholesterol levels and a higher incidence of TX than do those with the common Apo B variant, and frameshift mutations appear to have the most severe presentation. Copyright (C) 1999 Elsevier Science Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host.

IMPORTANCE: Some bacterial pathogens establish long-term infections that are difficult or impossible to eradicate with current treatments. Rapid advances in genome sequencing technologies provide a powerful tool for understanding bacterial persistence within the human host. Burkholderia pseudomallei is considered a highly pathogenic bacterium because infection is commonly fatal. Here, we document within-host evolution of B. pseudomallei in a unique case of human infection with ongoing chronic carriage. Genomic comparison of isolates obtained 139 months (11.5 years) apart showed a strong signal of adaptation within the human host, including inactivation of virulence and immunogenic factors, and deletion of pathways involved in environmental survival. Two global regulatory genes were mutated in the 139-month isolate, indicating extensive regulatory changes favoring bacterial persistence. Our study provides insights into B. pseudomallei pathogenesis and, more broadly, identifies parallel evolutionary mechanisms that underlie chronic persistence of all bacterial pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ataxia telangiectasia (AT) is a recessive syndrome, including cerebellar degeneration, immunologic defects and cancer predisposition, attributed to mutations in the recently isolated ATM (ataxia telangiectasia, mutated) gene. AT is diagnosed in 1/40,000 to 1/100,000 live births, with carriers calculated to comprise approximately 1% of the population. Studies of AT families have suggested that female relatives presumed to be carriers have a 5 to 8-fold increased risk for developing breast cancer, raising the possibility that germline ATM mutations may account for approximately 5% of all breast cancer cases. The increased risk for breast cancer reported for AT family members has been most evident among younger women, leading to an age-specific relative risk model predicting that 8% of breast cancer in women under age 40 arises in AT carriers, compared with 2% of cases between 40-59 years. To test this hypothesis, we undertook a germ-line mutational analysis of the ATM gene in a population of women with early onset of breast cancer, using a protein truncation (PTT) assay to detect chain-terminating mutations, which account for 90% of mutations identified in children with AT. We detected a heterozygous ATM mutation in 2/202 (1%) controls, consistent with the frequency of AT carriers predicted from epidemiologic studies. ATM mutations were present in only 2/401 (0.5%) women with early onset of breast cancer (P = 0.6). We conclude that heterozygous ATM mutations do not confer genetic predisposition to early onset of breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Philadelphia negative myeloproliferative neoplasms include polycythaemia vera (PV), essential thrombocytopenia (ET) and primary myelofibrosis (PMF). Patients with these conditions were mainly thought to harbour JAK2V617F mutations or an Myeloproliferative leukaemia (MPL) substitution. In 2013, two revolutionary studies identified recurrent mutations in a gene that encodes the protein calreticulin (CALR). This mutation was detected in patients with PMF and ET with non-mutated JAK2 or MPL but was absent in patients with PV. The CALR gene encodes the calreticulin protein, which is a multifactorial protein, mainly located in the endoplasmic reticulum in chromosome 19 and regulates calcium homeostasis, chaperones and has also been implicated in multiple cellular processes including cell signalling, regulation of gene expression, cell adhesion, autoimmunity and apoptosis. Somatic 52 bp deletions and recurrent 52 bp insertion mutations in CALR were detected and all resulted in frameshift and clusters in exon 9 of the gene. This review will summarise the current knowledge on the CALR gene and mutation of the gene in pathological conditions and patient phenotypes.