184 resultados para wireless TCP
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper investigates a dynamic buffer man-agement scheme for QoS control of multimedia services in be-yond 3G wireless systems. The scheme is studied in the context of the state-of-the-art 3.5G system i.e. the High Speed Downlink Packet Access (HSDPA) which enhances 3G UMTS to support high-speed packet switched services. Unlike earlier systems, UMTS-evolved systems from HSDPA and beyond incorporate mechanisms such as packet scheduling and HARQ in the base station necessitating data buffering at the air interface. This introduces a potential bottleneck to end-to-end communication. Hence, buffer management at the air interface is crucial for end-to-end QoS support of multimedia services with multi-plexed parallel diverse flows such as video and data in the same end-user session. The dynamic buffer management scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows is investigated via extensive HSDPA simulations. The impact of the scheme on end-to-end traffic performance is evaluated with an example multimedia session comprising a real-time streaming flow concurrent with TCP-based non real-time flow. Results demonstrate that the scheme can guar-antee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting the non real-time flow from starva-tion resulting in improved end-to-end throughput performance
Resumo:
This paper presents and investigates a dynamic
buffer management scheme for QoS control of multimedia
services in a 3.5G wireless system i.e. the High Speed Downlink
Packet Access (HSDPA). HSDPA was introduced to enhance
UMTS for high-speed packet switched services. With HSDPA,
packet scheduling and HARQ mechanisms in the base station
require data buffering at the air interface thus introducing a
potential bottleneck to end-to-end communication. Hence, for
multimedia services with multiplexed parallel diverse flows
such as video and data in the same end-user session, buffer
management schemes in the base station are essential to support
end-to-end QoS provision. We propose a dynamic buffer management
scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows in the paper. The end-to-end performance impact of the scheme is evaluated with an example multimedia session comprising a real-time streaming
flow concurrent with TCP-based non real-time flow via extensive HSDPA simulations. Results demonstrate that the scheme can guarantee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting non real-time flow from starvation resulting in improved end-to-end throughput performance
Resumo:
Interesting wireless networking scenarios exist wherein network services must be guaranteed in a dynamic fashion for some priority users. For example, in disaster recovery, members need to be able to quickly block other users in order to gain sole use of the radio channel. As it is not always feasible to physically switch off other users, we propose a new approach, termed selective packet destruction (SPD) to ensure service for priority users. A testbed for SPD has been created, based on the Rice University Wireless open-Access Research Platform and been used to examine the feasibility of our approach. Results from the testbed are presented to demonstrate the feasibility of SPD and show how a balance between performance and acknowledgement destruction rate can be achieved. A 90% reduction in TCP & UDP traffic is achieved for a 75% MAC ACK destruction rate.
Resumo:
First demonstration of a working dynamically configurable architecture for wireless IP networks. The programmable architecture was as result of a European collaboration between Industry and University and was applied to a range of IP wireless networks. The work laid the foundations for subsequent research initiatives (including the UK) into programmable wireless networks as well as influencing future wireless standards (e.g. ITU-T).EU project WINE (Wireless Internet NEtworking), -1999-10028.
Resumo:
This letter exposed a serious unfairness problem with IEEE 802.11 MAC based Mobile Ad-hoc Networks (MANETs) when operating TCP connections, and identifies the three common factors that contribute to this problem. The work initiated the development of a programmable wireless framework that is subsequently used in a spin-out company (TOM), and by the Telecoms Technology Testing centre in Taiwan(Dr D Chieng).
Resumo:
The paper describes the design and analysis of a packet scheduler intended to operate over wireless channels with spatially selective error bursts. A particularly innovative aspect in the design is the optimization of the scheduler algorithm to minimize the worst-case fairness index (WFI) for real-time IP traffic.
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.
Resumo:
A novel tag computation circuit for a credit based Self-Clocked Fair Queuing (SCFQ) Scheduler is presented. The scheduler combines Weighted Fair Queuing (WFQ) with a credit based bandwidth reallocation scheme. The proposed architecture is able to reallocate bandwidth on the fly if particular links suffer from channel quality degradation .The hardware architecture is parallel and pipelined enabling an aggregated throughput rate of 180 million tag computations per second. The throughput performance is ideal for Broadband Wireless Access applications, allowing room for relatively complex computations in QoS aware adaptive scheduling. The high-level system break-down is described and synthesis results for Altera Stratix II FPGA technology are presented.