180 resultados para wireless LAN
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This study reports the performance of an Archimedean spiral antenna, which exhibits unidirectional circularly polarized radiation patterns with a peak gain >8 dBic in the lower (2.4–2.485 GHz) and upper (5.15–5.35 and 5.725–5.875 GHz) Wireless local area network frequency bands. The required backlobe suppression and impedance match are obtained by placing a multiresonant high impedance surface (HIS) in close proximity to the radiating aperture. Simulated and measured radiation patterns are shown at the center frequency of all three channels and a comparison of the key performance metrics is made with free space and metal backed antenna arrangements to demonstrate the enhancements which are attributed to the HIS reflector.
Resumo:
First demonstration of a working dynamically configurable architecture for wireless IP networks. The programmable architecture was as result of a European collaboration between Industry and University and was applied to a range of IP wireless networks. The work laid the foundations for subsequent research initiatives (including the UK) into programmable wireless networks as well as influencing future wireless standards (e.g. ITU-T).EU project WINE (Wireless Internet NEtworking), -1999-10028.
Resumo:
The paper describes the design and analysis of a packet scheduler intended to operate over wireless channels with spatially selective error bursts. A particularly innovative aspect in the design is the optimization of the scheduler algorithm to minimize the worst-case fairness index (WFI) for real-time IP traffic.
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.
Resumo:
A novel tag computation circuit for a credit based Self-Clocked Fair Queuing (SCFQ) Scheduler is presented. The scheduler combines Weighted Fair Queuing (WFQ) with a credit based bandwidth reallocation scheme. The proposed architecture is able to reallocate bandwidth on the fly if particular links suffer from channel quality degradation .The hardware architecture is parallel and pipelined enabling an aggregated throughput rate of 180 million tag computations per second. The throughput performance is ideal for Broadband Wireless Access applications, allowing room for relatively complex computations in QoS aware adaptive scheduling. The high-level system break-down is described and synthesis results for Altera Stratix II FPGA technology are presented.
Resumo:
A spectrally efficient strategy is proposed for cooperative multiple access (CMA) channels in a centralized communication environment with $N$ users. By applying superposition coding, each user will transmit a mixture containing its own information as well as the other users', which means that each user shares parts of its power with the others. The use of superposition coding in cooperative networks was first proposed in , which will be generalized to a multiple-user scenario in this paper. Since the proposed CMA system can be seen as a precoded point-to-point multiple-antenna system, its performance can be best evaluated using the diversity-multiplexing tradeoff. By carefully categorizing the outage events, the diversity-multiplexing tradeoff can be obtained, which shows that the proposed cooperative strategy can achieve larger diversity/multiplexing gain than the compared transmission schemes at any diversity/multiplexing gain. Furthermore, it is demonstrated that the proposed strategy can achieve optimal tradeoff for multiplexing gains $0leq r leq 1$ whereas the compared cooperative scheme is only optimal for $0leq r leq ({1}/{N})$. As discussed in the paper, such superiority of the proposed CMA system is due to the fact that the relaying transmission does not consume extra channel use and, hence, the deteriorating effect of cooperative communication on the data rate is effectively limited.
Resumo:
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.
Resumo:
Key pre-distribution schemes have been proposed as means to overcome Wireless Sensor Networks constraints such as limited communication and processing power. Two sensor nodes can establish a secure link with some probability based on the information stored in their memories though it is not always possible that two sensor nodes may set up a secure link. In this paper, we propose a new approach that elects trusted common nodes called ”Proxies” which reside on an existing secure path linking two sensor nodes. These sensor nodes are used to send the generated key which will be divided into parts (nuggets) according to the number of elected proxies. Our approach has been assessed against previously developed algorithms and the results show that our algorithm discovers proxies more quickly which are closer to both end nodes, thus producing shorter path lengths. We have also assessed the impact of our algorithm on the average time to establish a secure link when the transmitter and receiver of the sensor nodes are ”ON”. The results show the superiority of our algorithm in this regard. Overall, the proposed algorithm is well suited for Wireless Sensor Networks.