175 resultados para wind-erosion
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Water ice covers the surface of various objects in the outer Solar system.Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.
Resumo:
Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.
Resumo:
This paper explores the nature of public acceptance of wind farms by investigating the discourses of support and objection to a proposed offshore scheme. It reviews research into opposition to wind farms, noting previous criticisms that this has tended to provide descriptive rather than explanatory insights and as a result, has not effectively informed the policy debate. One explanation is that much of this research has been conceived within an unreflective positivist research frame, which is inadequate in dealing with the subjectivity and value-basis of public acceptance of wind farm development. The paper then takes a case study of an offshore wind farm proposal in Northern Ireland and applies Q-Methodology to identify the dominant discourse of support and objection. It is argued that this provides new insights into the nature of wind farm conflicts, points to a number or recommendations for policy functions of an example of how this methodology can act as a potential bridge between positivist and post-positivist approaches to policy analysis.
Resumo:
X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.