9 resultados para visual representation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Sketches and photographs are a familiar tool of the traveller-writer, who commonly draws on them when transforming experience into a textual narrative. The verbal thus displaces the visual — the latter retained, if at all, as mere illustration — in ways that echo James Heffernan's definition of ekphrasis as the ‘verbal description of visual representation’. Yet Nicolas Bouvier's 1963 travel narrative L'Usage du monde challenges conventional conceptions of ekphrasis. Juxtaposing the stark ink drawings of Thierry Vernet — Bouvier's travelling companion — with Bouvier's textual narrative, L'Usage du monde shifts representation away from a hierarchical relationship between verbal and visual; it offers instead an account of other cultures that is grounded in polyphony and exchange. This article applies Bouvier's own image of travel as a mosaic to the dual narrative form (or ‘iconotext’, to use Michael Nerlich's term) in order to consider a range of fluid relationships between Bouvier's text and Vernet's drawings. In examining these relationships of amplification, reduction, and absence, the article argues that the plurality of the narrative prompts a rethinking of conventional, binary paradigms of intercultural contact. Ultimately, the iconotextual nature of L'Usage du monde can be interpreted as a metaphor for the processes of cultural translation and transculturation that are central to Bouvier's travelling ethos.
Resumo:
Coxian phase-type distributions are becoming a popular means of representing survival times within a health care environment. They are favoured as they show a distribution as a system of phases and can allow for an easy visual representation of the rate of flow of patients through a system. Difficulties arise, however, in determining the parameter estimates of the Coxian phase-type distribution. This paper examines ways of making the fitting of the Coxian phase-type distribution less cumbersome by outlining different software packages and algorithms available to perform the fit and assessing their capabilities through a number of performance measures. The performance measures rate each of the methods and help in identifying the more efficient. Conclusions drawn from these performance measures suggest SAS to be the most robust package. It has a high rate of convergence in each of the four example model fits considered, short computational times, detailed output, convergence criteria options, along with a succinct ability to switch between different algorithms.
Resumo:
Schools of nursing continuously strive to facilitate learning through student engagement and teaching strategies that encourage active learning. This paper reports on the successful use of mind mapping, an underutilised and underdeveloped strategy, to enhance teaching and learning in undergraduate nurse education (Spencer et al., 2013). Mind mapping or concept mapping has been defined in the literature as a visual representation of one’s thoughts and ideas (Abel and Freeze, 2006). It is characterised by colour, images and text in a graphical, nonlinear style. Mind maps promote the linking of concepts and capitalise on the brain’s natural aptitude for visual recognition to enhance learning and memory recall (Buzan, 2006). Traditional teaching strategies depend on linear processes, which in comparison lack engagement, associations and creativity (Spencer et al., 2013). Mind mapping was introduced to nursing students undertaking modules in ‘Dimensions of Care’ and ‘Care Delivery’ on year two of the nursing degree programme in Queen’s University Belfast. The aim of introducing mind mapping was to help students make the critical link between the pathophysiology of conditions studied and the provision of informed, safe and effective patient care, which had challenged previous student cohorts. Initially maps were instructor-made as described by Boley (2008), as a template for note taking during class and as a study aid. However, students rapidly embraced the strategy and started creating their own mind maps. Meaningful learning occurs when students engage with concepts and organise them independently in a way significant to them (Buzan, 2006). Students reported high levels of satisfaction to this teaching approach. This paper will present examples of the mind maps produced and explore how mind mapping can be further utilised within the undergraduate nursing curriculum.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.
Resumo:
It is well known that context influences our perception of visual motion direction. For example, spatial and temporal context manipulations can be used to induce two well-known motion illusions: direction repulsion and the direction after-effect (DAE). Both result in inaccurate perception of direction when a moving pattern is either superimposed on (direction repulsion), or presented following adaptation to (DAE), another pattern moving in a different direction. Remarkable similarities in tuning characteristics suggest that common processes underlie the two illusions. What is not clear, however, is whether the processes driving the two illusions are expressions of the same or different neural substrates. Here we report two experiments demonstrating that direction repulsion and the DAE are, in fact, expressions of different neural substrates. Our strategy was to use each of the illusions to create a distorted perceptual representation upon which the mechanisms generating the other illusion could potentially operate. We found that the processes mediating direction repulsion did indeed access the distorted perceptual representation induced by the DAE. Conversely, the DAE was unaffected by direction repulsion. Thus parallels in perceptual phenomenology do not necessarily imply common neural substrates. Our results also demonstrate that the neural processes driving the DAE occur at an earlier stage of motion processing than those underlying direction repulsion.
Resumo:
Sparse representation based visual tracking approaches have attracted increasing interests in the community in recent years. The main idea is to linearly represent each target candidate using a set of target and trivial templates while imposing a sparsity constraint onto the representation coefficients. After we obtain the coefficients using L1-norm minimization methods, the candidate with the lowest error, when it is reconstructed using only the target templates and the associated coefficients, is considered as the tracking result. In spite of promising system performance widely reported, it is unclear if the performance of these trackers can be maximised. In addition, computational complexity caused by the dimensionality of the feature space limits these algorithms in real-time applications. In this paper, we propose a real-time visual tracking method based on structurally random projection and weighted least squares techniques. In particular, to enhance the discriminative capability of the tracker, we introduce background templates to the linear representation framework. To handle appearance variations over time, we relax the sparsity constraint using a weighed least squares (WLS) method to obtain the representation coefficients. To further reduce the computational complexity, structurally random projection is used to reduce the dimensionality of the feature space while preserving the pairwise distances between the data points in the feature space. Experimental results show that the proposed approach outperforms several state-of-the-art tracking methods.
Resumo:
This book examines how contemporary theatre, performance, film and the visual arts respond to the post-conflict condition. The contents of the volume focus on a range of post-conflict cities, encouraging interdisciplinary discussion on the role of the arts and its relation to issues of testimony, witnessing, forgetting, representation, healing, reconciliation, agency, and metaphor. Contributors include: Thomas Elsaesser, Jane Taylor, Marvin Carlson, Rob Stone, Laurel Borisenko, Katarzyna Puzon, Miriam Paeslack, Emma Grey, Paula Blair, Zoran Poposki, Marija Todorova, Elena Carduro, and Paul Devlin.
Resumo:
Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.
Resumo:
In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.