13 resultados para virus strain

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rodent brain-adapted measles virus (MV) strains, such as CAM/RB and recombinant MVs based on the Edmonston strain containing the haemagglutinin (H) of CAM/RB, cause acute encephalitis after intracerebral infection of newborn rodents. We have demonstrated that rodent neurovirulence is modulated by two mutations at amino acid positions 195 and 200 in the H protein, one of these positions (200) being a potential glycosylation site. In order to analyse the effects of specific amino acids at these positions, we introduced a range of individual and combined mutations into the open reading frame of the H gene to generate a number of eukaryotic expression plasmids. The functionality of the mutant H proteins was assessed in transfected cells and by generating recombinant viruses. Interestingly, viruses caused acute encephalitis only if the amino acid Ser at position 200 was coupled with Gly at position 195, whereas viruses with single or combined mutations at these positions, including glycosylation at position 200, were attenuated. Neurovirulence was associated with virus spread and induction of neuronal apoptosis, whereas attenuated viruses failed to infect brain cells. Similar results were obtained by using primary brain-cell cultures. Our findings indicate that a structural alteration in the stem 2 region of the H protein at position 195 or 200 interferes with infectivity of rodent neurons, and suggest that the interaction of the viral attachment protein with cellular receptors on neurons is affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jeryl Lynn (JL) vaccine against mumps virus (MuV) contains two components, MuV(JL5) and MuV(JL2), which differ by over 400 nt. Due to the occurrence of bias in the direction of mutation, these differences and those found in nucleotide sequences of different isolates of the minor component in the vaccine (MuV(JL2)) might be due to the effect of ADAR-like deaminases on MuV grown in tissue-cultured cells. A molecular clone Of MuV(JL2) (pMuV(JL2)) and MuV(JL2) -specific helper plasmids were constructed in order to investigate molecular interactions between MuV(JL5) and MuV(JL2), to augment the existing molecular clone Of MuV(JL)5 (pMuV(JL5)) and MuV(JL5) -specific helper plasmids. Genome and mRNA termini Of MuV(JL2) were characterized, and an unusual oligo-G insertion transcriptional editing event was detected near the F mRNA polyadenylation site of MuV(JL2), but not Of MuV(JL5). Genes encoding glycoproteins of rMuV(JL2) and rMuV(JL5) have been exchanged to characterize the oligo-G insertion, which associated with the specific sequence of the IF gene of MuV(JL2) and not with any other genes or the RNA-dependent RNA polymerase of strain MuV(JL2). The results indicate that a single G-to-A sequence change obliterates the co-transcriptional editing of the F mRNA and that this oligo-G insertion does not affect the growth of the virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport properties (adsorption and aggregation behavior) of virus-like particles (VLPs) of two strains of norovirus ("Norwalk" GI.1 and "Houston" GII.4) were studied in a variety of solution chemistries. GI.1 and GII.4 VLPs were found to be stable against aggregation at pH 4.0-8.0. At pH 9.0, GI.1 VLPs rapidly disintegrated. The attachment efficiencies (a) of GI.1 and GII.4 VLPs to silica increased with increasing ionic strength in NaCl solutions at pH 8.0. The attachment efficiency of GI.1 VLPs decreased as pH was increased above the isoelectric point (pH 5.0), whereas at and below the isoelectric point, the attachment efficiency was erratic. Ca(2+) and Mg(2+) dramatically increased the attachment efficiencies of GI.1 and GII.4 VLPs, which may be due to specific interactions with the VLP capsids. Bicarbonate decreased attachment efficiencies for both GI.1 and GII.4 VLPs, whereas phosphate decreased the attachment efficiency of GI.1, while increasing GII.4 attachment efficiency. The observed differences in GI.1 and GII.4 VLP attachment efficiencies in response to solution chemistry may be attributed to differential responses of the unique arrangement of exposed amino acid residues on the capsid surface of each VLP strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleotide sequence encoding the C terminus of the nucleocapsid protein of measles virus (MV) is the most variable in the genome. The sequence of this region is reported for 21 new MV strains and for virus RNA obtained from cases of subacute panencephalitis (SSPE) tissue. The nucleotide sequence of a total of 65 MV strains has been analysed using the CLUSTAL program to determine the relationships between the strains. An unrooted tree shows that eight different genotypes can be discerned amongst the sequences analysed so far. The data show that the C-terminal coding sequence of the nucleocapsid gene, although highly variable between strains, is stable in a given strain and does not appear to diverge in tissue culture. It therefore provides a good 'signature' sequence for specific genotypes. The sequence of this region can be used to discriminate new imported viruses from old 'endemic' strains of MV in a geographical area. The different genotypes are not geographically restricted although some appear to be the mainly 'endemic' types in large areas of the world. In global terms there appears to be at least four co-circulating genotypes of MV. The low level of divergence in the Edmonston lineage group isolated before 1970 indicates that some isolates are probably laboratory contaminants. This applies to some SSPE isolates such as the Halle, Mantooth and Horta-Barbosa strains as well as some wild-type isolates from that period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measles virus Edmonston strain was purified by ultrafiltration followed by two successive sedimentations through sucrose. Purified virus retained infectivity and, when used as an immunogen, elicited high titred antibody to measles antigens by conventional serology. The measles preparations were examined by SDS-PAGE followed by staining. In addition, following PAGE, the purity of these preparations was assessed immunochemically using antisera directed to measles and host cell antigens. The results of these studies demonstrate the utility of the purification method for the preparation of milligram quantities of relatively pure measles virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there is currently no evidence of emerging strains of measles virus (MV) that can resist neutralization by the anti-MV antibodies present in vaccinees, certain mutations in circulating wt MV strains appear to reduce the efficacy of these antibodies. Moreover, it has been hypothesized that resistance to neutralization by such antibodies could allow MV to persist. In this study, we use a novel in vitro system to determine the molecular basis of MV's resistance to neutralization. We find that both wild-type and laboratory strain MV variants that escape neutralization by anti-MV polyclonal sera possess multiple mutations in their H, F, and M proteins. Cytometric analysis of cells expressing viral escape mutants possessing minimal mutations and their plasmid-expressed H, F, and M proteins indicates that immune resistance is due to particular mutations that can occur in any of these three proteins that affect at distance, rather than directly, the native conformation of the MV-H globular head and hence its epitopes. A high percentage of the escape mutants contain mutations found in cases of Subacute Sclerosing Panencephalitis (SSPE) and our results could potentially shed light on the pathogenesis of this rare fatal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.

IMPORTANCE

Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.