108 resultados para viral vector

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades, numerous types of nanomedicines have been developed for the efficient and safe delivery of nucleic acid-based drugs for cancer therapy. Given that the destination sites for nucleic acid-based drugs are inside cancer cells, delivery systems need to be both targeted and shielded in order to overcome the extracellular and intracellular barriers. One of the major obstacles that has hindered the translation of nanotechnology-based gene-delivery systems into the clinic has been the complexity of the design and assembly processes, resulting in non-uniform nanocarriers with unpredictable surface properties and efficiencies. Consequently, no product has reached the clinic yet. In order to address this shortcoming, a multifunctional targeted biopolymer is genetically engineered in one step, eliminating the need for multiple chemical conjugations. Then, by systematic modulation of the ratios of the targeted recombinant vector to PEGylated peptides of different sizes, a library of targeted-shielded viral-mimetic nanoparticles (VMNs) with diverse surface properties are assembled. Through the use of physicochemical and biological assays, targeted-shielded VMNs with remarkably high transfection efficiencies (>95%) are screened. In addition, the batch-to-batch variability of the assembled targeted-shielded VMNs in terms of uniformity and efficiency is examined and, in both cases, the coefficient of variation is calculated to be below 20%, indicating a highly reproducible and uniform system. These results provide design parameters for engineering uniform, targeted-shielded VMNs with very high cell transfection rates that exhibit the important characteristics for in vivo translation. These design parameters and principles could be used to tailor-make and assemble targeted-shielded VMNs that could deliver any nucleic acid payload to any mammalian cell type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferons (IFNs) are essential for host defense. Although the antiviral effects of the type 1 IFNs IFN- and IFN- (IFN-/) have been established, their immunoregulatory functions, especially their ability to regulate IFN- production, are poorly understood. Here we show that IFN-/ activate STAT4 directly (STAT, signal transducers and activators of transcription) and that this is required for IFN- production during viral infections of mice, in concert with T cell receptor-derived signals. In contrast, STAT1 appears to negatively regulate IFN-/ induction of IFN-. Thus, type 1 IFNs, in addition to interleukin-12, provide pathways for innate regulation of adaptive immunity, and their immunoregulatory functions are controlled by modulating the activity of individual STATs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription from morbillivirus genomes commences at a single promoter in the 3' non-coding terminus, with the six genes being transcribed sequentially. The 3' and 5' untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5' UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5' UTRs. Insertions into the 5' UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5' UTR, govern this decreased expression from TU2.