117 resultados para vertical movement

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an effort to develop a novel electronic paper image display technology based on the electrowetting principle, a 3-D electrowetting cell is designed and fabricated, which consists of two 3-D bent electrodes, each having a horizontal surface made of gold and a vertical surface made of indium tin oxide (ITO) glass as a color display window, a layer of dielectric material on the 3-D electrodes, and a highly fluorinated hydrophobic layer on the surface of the dielectric layer. Results of this work show that an electrowetting-induced motion of an aqueous droplet in immiscible oils can be achieved reversibly across the boundary of the horizontal and vertical surfaces of the 3-D electrode surface. It is also shown that the droplet can maintain its wetting state on a vertical sidewall electrode free of a power supplier when the voltage is removed. This phenomenon may form the basis for color contrast modulation applications, where a power-free image display is required, such as electronic paper display technology in the future. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3100201]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ways in which fish use space in nature are described, distinguishing between movements within a home range, dispersal and directed migration, as are the mechanisms that determine how fish use space. The external stimuli to which fish respond, how they use these cues to find their way around and the role of hormones in migration are also covered. An account is then given of how movement and orientation change with age, the evidence for inherited differences in these aspects of behaviour and environmental effects on development of space use patterns. The benefits that accrue to fish from moving in particular ways are described, as are adverse consequences of such movements, in the form of energetic costs and exposure to predators and pathogens. The ways in which benefits and costs are balanced against each other are discussed, with special reference to diurnal vertical migration. Although cultured fish usually inhabit confined spaces, their natural patterns of orientation and movement can cause a number of problems in aquaculture and some of these are described. Such problems are amenable to biological solutions and these are considered in the final section of this chapter, which also looks at the potential for using what is known about how fish move about to improve the effectiveness of general husbandry practices.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.