13 resultados para uncertain systems
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Correctly modelling and reasoning with uncertain information from heterogeneous sources in large-scale systems is critical when the reliability is unknown and we still want to derive adequate conclusions. To this end, context-dependent merging strategies have been proposed in the literature. In this paper we investigate how one such context-dependent merging strategy (originally defined for possibility theory), called largely partially maximal consistent subsets (LPMCS), can be adapted to Dempster-Shafer (DS) theory. We identify those measures for the degree of uncertainty and internal conflict that are available in DS theory and show how they can be used for guiding LPMCS merging. A simplified real-world power distribution scenario illustrates our framework. We also briefly discuss how our approach can be incorporated into a multi-agent programming language, thus leading to better plan selection and decision making.
Resumo:
Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties.
Resumo:
In previous papers, we have presented a logic-based framework based on fusion rules for merging structured news reports. Structured news reports are XML documents, where the textentries are restricted to individual words or simple phrases, such as names and domain-specific terminology, and numbers and units. We assume structured news reports do not require natural language processing. Fusion rules are a form of scripting language that define how structured news reports should be merged. The antecedent of a fusion rule is a call to investigate the information in the structured news reports and the background knowledge, and the consequent of a fusion rule is a formula specifying an action to be undertaken to form a merged report. It is expected that a set of fusion rules is defined for any given application. In this paper we extend the approach to handling probability values, degrees of beliefs, or necessity measures associated with textentries in the news reports. We present the formal definition for each of these types of uncertainty and explain how they can be handled using fusion rules. We also discuss the methods of detecting inconsistencies among sources.
Resumo:
The need to merge multiple sources of uncertaininformation is an important issue in many application areas,especially when there is potential for contradictions betweensources. Possibility theory offers a flexible framework to represent,and reason with, uncertain information, and there isa range of merging operators, such as the conjunctive anddisjunctive operators, for combining information. However, withthe proposals to date, the context of the information to be mergedis largely ignored during the process of selecting which mergingoperators to use. To address this shortcoming, in this paper,we propose an adaptive merging algorithm which selects largelypartially maximal consistent subsets (LPMCSs) of sources, thatcan be merged through relaxation of the conjunctive operator, byassessing the coherence of the information in each subset. In thisway, a fusion process can integrate both conjunctive and disjunctiveoperators in a more flexible manner and thereby be morecontext dependent. A comparison with related merging methodsshows how our algorithm can produce a more consensual result.
Resumo:
Use of the Dempster-Shafer (D-S) theory of evidence to deal with uncertainty in knowledge-based systems has been widely addressed. Several AI implementations have been undertaken based on the D-S theory of evidence or the extended theory. But the representation of uncertain relationships between evidence and hypothesis groups (heuristic knowledge) is still a major problem. This paper presents an approach to representing such knowledge, in which Yen’s probabilistic multi-set mappings have been extended to evidential mappings, and Shafer’s partition technique is used to get the mass function in a complex evidence space. Then, a new graphic method for describing the knowledge is introduced which is an extension of the graphic model by Lowrance et al. Finally, an extended framework for evidential reasoning systems is specified.
Resumo:
This paper arose from the work carried out for the Cullen/Uff Joint Inquiry into Train Protection Systems. It is concerned with the problem of evaluating the benefits of safety enhancements in order to avoid rare, but catastrophic accidents, and the role of Operations Research in the process. The problems include both input values and representation of outcomes. A key input is the value of life. This paper briefly discusses why the value of life might vary from incident to incident and reviews alternative estimates before producing a 'best estimate' for rail. When the occurrence of an event is uncertain, the normal method is to apply a single 'expected' value. This paper argues that a more effective method of representing such situations is through Monte-Carlo simulation and demonstrates the use of the methodology on a case study of the decision as to whether or not advanced train protection (ATP) should have been installed on a route to the west of London. This paper suggests that the output is more informative than traditional cost-benefit appraisals or engineering event tree approaches. It also shows that, unlike the results from utilizing the traditional approach, the value of ATP on this route would be positive over 50% of the time.
Resumo:
The long-term morphodynamic ordering of gravel-dominated coastal systems (GDCS), many of which serve as coastal defences in northwest Europe, is dominated by extreme events that generate barrier crest overflow. An understanding of this morphodynamic ordering is fraught with several unresolved difficulties. These are related to the twin problems of the inadequacy of pertinent morphodynamic parameterisation and of obtaining data from modern shores enabling such parameterisation. Major uncertainties concern the timing of over-crest flow in terms of return period of extreme elevation; the intensity and structure of the overflow field; antecedent beachface characteristics in response to storms; the rate of relative sea-level change; tidal stage control; and barrier resistance to forcing, itself determined by a number of unknowns including barrier form and size, sediment size and mosaics, and barrier resilience. While generalised extreme value modelling may provide a means of characterising overwashing return-period and its variability, exceptional tsunami events are outside the scope of such modelling. The characterisation of GDCS morphodynamics in terms of the forcing extreme events will necessitate integrating some or all of these parameters into a single model.
Resumo:
Revising its beliefs when receiving new information is an important ability of any intelligent system. However, in realistic settings the new input is not always certain. A compelling way of dealing with uncertain input in an agent-based setting is to treat it as unreliable input, which may strengthen or weaken the beliefs of the agent. Recent work focused on the postulates associated with this form of belief change and on finding semantical operators that satisfy these postulates. In this paper we propose a new syntactic approach for this form of belief change and show that it agrees with the semantical definition. This makes it feasible to develop complex agent systems capable of efficiently dealing with unreliable input in a semantically meaningful way. Additionally, we show that imposing restrictions on the input and the beliefs that are entailed allows us to devise a tractable approach suitable for resource-bounded agents or agents where reactiveness is of paramount importance.
Resumo:
The BDI architecture, where agents are modelled based on their beliefs, desires and intentions, provides a practical approach to develop large scale systems. However, it is not well suited to model complex Supervisory Control And Data Acquisition (SCADA) systems pervaded by uncertainty. In this paper we address this issue by extending the operational semantics of Can(Plan) into Can(Plan)+. We start by modelling the beliefs of an agent as a set of epistemic states where each state, possibly using a different representation, models part of the agent's beliefs. These epistemic states are stratified to make them commensurable and to reason about the uncertain beliefs of the agent. The syntax and semantics of a BDI agent are extended accordingly and we identify fragments with computationally efficient semantics. Finally, we examine how primitive actions are affected by uncertainty and we define an appropriate form of lookahead planning.