117 resultados para ultra high-power laser diode arrays

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10(20) W/cm(2)) and ultra-high contrast (similar to 10(10)) laser pulses with 0.05-10 mu m thick Al foils at normal (0 degrees) and 35 degrees laser incidence is investigated. When decreasing the target thickness from 10 mu m down to 0.05 mu m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 degrees) laser incidence on the target. A laser energy conversion into protons of,similar to 6.5% is estimated at 35 degrees laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3643133]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET) is a powerful diagnostic/imaging technique requiring the production of the short-lived positron emitting isotopes C-11, N-13, O-15 and F-18 by proton irradiation of natural/enriched targets using cyclotrons. The development of PET has been hampered due to the size and shielding requirements of nuclear installations. Recent results show that when an intense laser beam interacts with solid targets, megaelectronvolt (MeV) protons capable of producing PET isotopes are generated. This report describes how to generate intense PET sources of C-11 and F-18 using a petawatt laser beam. The work describing the laser production of F-18 through a (p,n) O-18 reaction, and the subsequent synthesis of 2-[F-18] is reported for the first time. The potential for developing compact laser technology for this purpose is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the state of the art for high power laser systems increases from terawatt to petawatt level and beyond, a crucial parameter for routinely monitoring high intensity performance is laser spot size on a solid target during an intense interaction in the tight focus regime ( 10(19) Wcm(-2) is demonstrated experimentally and shown to provide the basis for an effective focus diagnostic. Importantly, this technique is also shown to allow in-situ diagnosis of focal spot quality achieved after reflection from a double plasma mirror setup for very intense high contrast interactions (> 10(20) Wcm(-2)) an important application for the field of high laser contrast interaction science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential that laser based particle accelerators offer to solve sizing and cost issues arising with conventional proton therapy has generated great interest in the understanding and development of laser ion acceleration, and in investigating the radiobiological effects induced by laser accelerated ions. Laser-driven ions are produced in bursts of ultra-short duration resulting in ultra-high dose rates, and an investigation at Queen's University Belfast was carried out to investigate this virtually unexplored regime of cell rdaiobiology. This employed the TARANIS terawatt laser producing protons in the MeV range for proton irradiation, with dose rates exceeding 10 Gys on a single exposure. A clonogenic assay was implemented to analyse the biological effect of proton irradiation on V79 cells, which, when compared to data obtained with the same cell line irradiated with conventionally accelerated protons, was found to show no significant difference. A Relative Biological effectiveness of 1.4±0.2 at 10 % Survival Fraction was estimated from a comparison with a 225 kVp X-ray source. © 2013 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed an experiment aimed at measuring self-generated magnetic fields produced in solids by high electron currents following high-intensity and high contrast short-pulse laser irradiation. This was done using longitudinal high resolution proton deflectometry. The experiment was performed at the Titan-JLF laser facility with a high-power short-pulse beam (700 fs, ~ 110 J) split into two beams irradiating two solid targets. One beam is used for the generation of protons and the other beam for the generation of the ultra-high currents of electrons and of the associated magnetic fields. This capability allows us to study the spatio-temporal evolution of the magnetic fields and its dependence on the laser intensity and target material. © Owned by the authors, published by EDP Sciences, 2013.