49 resultados para traffic and transport

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ~4.5–7 m bgl. Highest TCE measurements at 390,000 µg L-1 for groundwater and at 39,000 µg kg-1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio simulations of a single molecule of HCl in liquid dimethyl imidazolium chloride [dmim][Cl] show that the acidic proton exists as a symmetric, linear ClHCl- species. Details of the solvation structure around this molecule are given. The proton-transfer process was investigated by applying a force along the antisymmetric stretch coordinate until the molecule broke. Changes in the free energy and local solvation structure during this process were investigated. In the reaction mechanism identified, a free chloride approaches the proton from the side. As the original ClHCl- distorts and the incoming chloride forms a new bond to the proton, one of the original chlorine atoms is expelled and a new linear molecule is formed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density, rheological properties, and conductivity of a homologous series of ammonium-based ionic liquids N-alkyl-triethylammonium bis{(trifluoromethyl) sulfonyl}imide were studied at atmospheric pressure as a function of alkyl chain length on the cation, as well as of the temperature from (293.15 to 363.15) K. From these investigations, the effect of the cation structure was quantified on each studied properties, which demonstrated, as expected, a decrease of the density and conductivity, a contrario of an increase of the viscosity with the alkyl chain length on the ammonium cation. Furthermore, rheological properties were measured for both pure and water-saturated ionic liquids. The studied ionic liquids were found to be Newtonian and non-Arrhenius. Additionally, the effect of water content in the studied ionic liquids on their viscosity was investigated by adding water until they were saturated at 293.15 K. By comparing the viscosity of pure ionic liquids with the data measured in water-saturated samples, it appears that the presence of water decreases dramatically the viscosity of ionic liquids by up to three times. An analysis of involved transport properties leads us to a classification of the studied ionic liquids in terms of their ionicity using the Walden plot, from which it is evident that they can be classified as "good" ionic liquids. Finally, from measured density data, different volumetric properties, that is, molar volumes and thermal expansion coefficients were determined as a function of temperature and of cationic structure. Based on these volumetric properties, an extension of Jacquemin's group contribution model has been then established and tested for alkylammonium-based ionic liquids within a relatively good uncertainty close to 0.1 %. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in nitrogen fate and transport in different catchments types is often not considered. This research considers the importance of such nitrogen processes within groundwater pathways in two agricultural catchments in Ireland; a well drained catchment, underlain by karstified Carboniferous limestone, and a poorly drained catchment, underlain by Silurian greywacke.
Depth specific low-flow groundwater sampling was used to evaluate the hydrochemical stratification in groundwater. Groundwater samples, as well as surface water samples, along river courses were analysed for nitrogen species (NO3, NH4 and NO2) and nitrate isotopes (d15N and d18O) as well as field parameters and major ions
.
The dominant nitrate (NO3) groundwater pathway in the poorly drained greywacke catchment is through the shallow weathered bedrock, as indicated by transmissivity values and the ionic and isotopic signatures, and a clear reduction in NO3 concentration is observed with depth. A similar chloride trend would suggest dilution is a major factor, however d15N and d18O isotopic values producing an enrichment ratio of 1.8 indicate that denitrification is also an important process involved in the fate of the NO3 within the groundwater flow system. This consistent trend with depth is in contrast to the stratification pattern observed in the karstified catchment. NO3 was not detected in the shallow groundwater pathway; the dominant groundwater pathway is in the deeper groundwater where there is little change in the nitrate isotope values with depth (d15N values range between 4.1 and 4.6 ‰). This deeper groundwater contributes the dominant proportion of the river flow through a number of springs. As a result, the deeper groundwater, springs and river have a similar ionic signature and NO3 concentration range (23 ± 3 mg/l). Despite this pattern, the NO3 isotopes show a distinct difference in isotopic values between the deeper groundwater in the diffuse karst and the springs indicating some denitrification is occurring during groundwater discharge into the river. Furthermore the isotopes give an indication of the variability of the spatial extent of the springs and the complexities of the fissures through which they are fed. The results of this study clearly show the importance of the geology in the fate and transport of NO3 in agricultural catchments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009). The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.