12 resultados para the Chaohe River Basin

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The partially semi-arid Oldman River basin (OMRB), located in southern Alberta (Canada), has an area of 28 200 km2, is forested in its western headwater part, and is used for agriculture in its eastern part. Hydrometric measurements indicate that flow in the Oldman River has decreased by ~34% between 1913 and 2003, and it is predicted that water withdrawals will increase in the next 20 years. The objective of this study was to determine whether isotope ratio measurements can provide further insight into the water dynamics of the Oldman River and its tributaries. Surface water samples were collected monthly between December 2000 and March 2003. Groundwater samples were taken from 58 wells during one-time sampling trips. Runoff within the OMRB is currently about 70 mm year-1, with a corresponding runoff ratio of 0Ð18. Seasonal flow characteristics are markedly different upstream and downstream of the Oldman River reservoir. Upstream, sharp increases in flow in late spring and early summer are followed by a rapid decrease to base flow levels. Downstream, a prolonged high flow peak is observed due to the storage effect of the Oldman River reservoir. The seasonal variation in the isotopic composition of surface water from upstream sites is small. This suggests that peak runoff is not predominantly generated by melting snow accumulated during the preceding winter, but mainly by relatively well-mixed young groundwater. A significant increase in the d18O and d2H values in the downstream part of the basin was observed. The increase in the isotopic values is partly due to surface water and groundwater influx with progressively higher d18O and d2H values in the eastern part, and partly due to evaporation. Hence, the combination of hydrometric data with isotope measurements yields valuable insights into the water dynamics in the OMRB that may be further refined with more intensive measurement programmes in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations and isotopic compositions of NO-3 from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO-3 sources within the OMR basin. For the OMR sites, NO-3 -N concentrations reached up to 0.34 mg L-1, d15N-NO-3 values varied between –0.3 and +13.8‰, and d18O-NO-3 values ranged from –10.0 to +5.7‰. For the tributary sites, NO-3 -N concentrations were as high as 8.81 mg L-1, d15N-NO-3 values varied between –2.5 and +23.4‰, and d18O-NO-3 values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantly NO-3 to the OMR with d15N-NO-3 indicative of soil nitrification. In contrast, tributaries in the eastern agriculturally-urban-industrially-used part of the basin contribute NO-3 with d15N-NO-3 values of about +16‰ indicative of manure and/or sewage derived NO-3. This difference in d15N-NO-3 values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO-3 source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, d15N-NO-3 values in the Oldman River increased from +6‰ in the downstream direction (W to E), although [NO-3 -N] increased only moderately (generally

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing d34S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the last few decades, sulfate concentrations in streamwater have received considerable attention due to their dominant role in anthropogenic acidification of surface waters. The objectives of this study conducted in the Oldman River Basin in Alberta (Canada) were to determine the influence of geology, land use and anthropogenic activities on sources, concentrations and fluxes of riverine sulfate on a watershed scale. This was achieved by combining hydrological, chemical and isotopic techniques. Surface water samples were collected from the main stem and tributaries of the Oldman River on a monthly basis between December 2000 and March 2003 and analyzed for chemical and isotopic compositions. At a given sampling site, sulfate sources were primarily dependent on geology and did not vary with time or flow condition. With increasing flow distance a gradual shift from ?34S values > 10 ‰ and ?18O values > 0 ‰ of riverine sulfate indicating evaporite dissolution and soil-derived sulfate in the predominantly forested headwaters, to negative ?34S and ?18O values suggested that sulfide oxidation was the predominant sulfate source in the agriculturally used downstream part of the watershed. Significant increases in sulfate concentrations and fluxes with downstream distance were observed, and were attributed to anthropogenically enhanced sulfide oxidation due to the presence of an extensive irrigation drainage network with seasonally varying water levels. Sulfate-S exports in an artificially drained subbasin (64 kg S/ha/yr) were found to exceed those in a naturally drained subbasin (4 kg S/ha/yr) by an order of magnitude. Our dataset suggests that the naturally occurring process of sulfide oxidation has been enhanced in the Oldman River Basin by the presence of an extensive network of drainage and irrigation canals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluvial islands are emergent landforms which form at the interface between the permanently inundated areas of the river channel and the more stable areas of the floodplain as a result of interactions between physical river processes, wood and riparian vegetation. These highly dynamical systems are ideal to study soil structure development in the short to medium term, a process in which soil biota and plants play a substantial role. We investigated soil structure development on islands along a 40 year chronosequence within a 3 km island-braided reach of the Tagliamento River, Northeastern Italy. We used several parameters to capture different aspects of the soil structure, and measured biotic (e.g., fungal and plant root parameters) and abiotic (e.g. organic carbon) factors expected to determine the structure. We estimated models relating soil structure to its determinants, and, in order to confer statistical robustness to our results, we explicitly took into account spatial autocorrelation, which is present due to the space for time substitution inherent in the study of chronosequences and may have confounded results of previous studies. We found that, despite the eroding forces from the hydrological and geomorphological dynamics to which the system is subject, all soil structure variables significantly, and in some case greatly increased with site age. We interpret this as a macroscopic proxy for the major direct and indirect binding effects exerted by root variables and extraradical hyphae of arbuscular mycorrhizal fungi (AMF). Key soil structure parameters such as percentage of water stable aggregates (WSA) can double from the time the island landform is initiated (mean WSA = 30%) to the full 40 years (mean WSA = 64%) covered by our chronosequence. The study demonstrates the fundamental role of soil biota and plant roots in aggregating soils even in a system in which intense short to medium term physical disturbances are common.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals.
An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region.
The results indicate that large amounts of PBDEs presently reside in all model compartments – air, soil, water, and sediment – with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities.
Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat less than measured values. In sediment, model results are at the high end of measured values.