7 resultados para tensile behavior
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.
Resumo:
Two ferritic/martensitic steels, T91 steel and newly developed SIMP steel, were subject to tensile test after being oxidized in the liquid lead-bismuth eutectic (LBE) at 873 K for 500 h, 1000 h and 2000 h. Tensile tests were also carried out on the steels only thermally aged at 873 K. The result shows that thermal aging has no effect. Exposure to LBE at 873 K leads to a slight decrease in strength, but a large decrease in elongation when tested at 873 K. When tested at 873 K after 2000 h exposure, the tensile strength of T91 decreases slightly, and elongation from 39% to 21%. For SIMP, the decreases are slightly and from 44% to 28%, for tensile strength and elongation, respectively. The room temperature strength has slightly larger percentage reductions after the LBE exposure, but the elongation changes little.
Resumo:
SOMMARIO – Si presenta un macro modello di tipo reticolare in grado di riprodurre il comportamento in presenza di taglio e momento di nodi esterni trave-colonna di telai in calcestruzzo fibrorinforzato con fibre di acciaio
uncinato ed ordinario. Il caricamento del sistema è di tipo monotono come nel caso dell’analisi di pushover. Il modello considera la presenza di armature orizzontali e verticali della regione nodale e tiene in conto delle modalità
di rottura legate allo snervamento delle barre e allo schiacciamento delle regioni compresse in regime di sforzi pluriassiali. Il modello include le deformazioni flessionali della trave e della colonna in presenza di sforzo normale costante e restituisce la risposta del sistema colonna-nodo-trave (sub-assembralggio) tramite le curve carico-freccia all’estremità della semitrave. Per i singoli costituenti (trave, colonna e nodo) si è considerata la prima fessurazione, lo snervamento e lo schiacciamento delle regioni compresse e si sono fornite precise indicazioni sulla sequenza degli eventi che come è noto sono di fondamentale importanza per lo sviluppo di un progetto plastico che rispetti la gerarchia delle resistenze. Con l’uso del modello il controllo della gerarchia delle resistenze avviene a livello sezionale (lo snervamento delle barre deve avvenire prima dello schiacciamento delle regioni compresse) o di macro elemento (nella regione nodale lo snervamento delle staffe precede la crisi dei puntoni) e dell’intero elemento
sub-assemblaggio trave debole, colonna forte e nodo sovraresistente.
La risposta ottenuta con i modello proposto è in buon accordo con le risposte sperimentali disponibili in letteratura (almeno in termini di resistenza del sub-assemblaggio). Il modello è stato ulteriormente validato con analisi
numeriche agli elementi finiti condotte con il codice ATENA-2D. Le analisi numeriche sono state condotte utilizzando per il calcestruzzo fibroso adeguate leggi costitutive proposte dagli autori ed in grado di cogliere gli effetti
di softening e di resistenza residua a trazione legati alla presenza di fibre. Ulteriori sviluppi del modello saranno indirizzati a includere gli effetti di sfilamento delle barre d’armatura della trave e del conseguente degrado delle
tensioni d’aderenza per effetto di carichi monotonici e ciclici.
SUMMARY – A softened strut-and-tie macro model able to reproduce the flexural behavior of external beam-tocolumn joints with the presence of horizontal and vertical steel bars, including softening of compressed struts and yielding of main and secondary steel bars, is presented, to be used for the pushover analysis. The model proposed is able to calculate also the flexural response of fibrous reinforced concrete (FRC) beam-to-column sub-assemblages in term of a multilinear load-deflection curves. The model is able to take into account of the tensile behavior of main bars embedded in the surrounding concrete and of the softening of the compressed strut, the arrangement and percentage of the steel bars, the percentage and the geometry of steel fibers. First cracking, yielding of main steel and crushing of concrete were identified to determine the corresponding loads and displacement and to plot the simplified monotonic load-deflection curves of the sub-assemblages subjected in the column to constant vertical
load and at the tip of the beam to monotonically increasing lateral force. Through these load-delfection curves the component (beam, joint and column) that first collapse can be recognized and the capacity design can be verified.
The experimental results available in the literature are compared with the results obtained through the proposed model. Further, a validation of the proposed model is numerically made by using a non linear finite element program (ATENA-2D) able to analyze the flexural behavior of sub-assemblages.
Resumo:
For the potential influence produced by the reinforcement/matrix interphase in particle reinforced metal matrix composites (PMMCs), a unit cell model with transition interphase was proposed. Uniaxial tensile loading was simulated and the stress/strain behavior was predicted. The results show that a transition interphase with both appropriate strength and thickness could affect the failure mode, reduce the stress concentration, and enhance the maximum strain value of the composite.
Resumo:
NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.
Resumo:
The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of Poly ε-caprolactone (PCL) with Poly l-lactic acid (PLLA), Nalidixic Acid (NA) and Polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends.
Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity.
At the higher temperature the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste.