8 resultados para temporal comparison
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
It is often suggested that people in potentially threatening situations might engage in self-enhancing temporal comparisons that allow them to view themselves and their experience in a more positive light. Data from semistructured interviews with 12 individuals in the UK diagnosed as having schizophrenia were content analyzed to explore patterns of temporal comparison. The study found that the onset of schizophrenic symptoms created a new baseline in participants' representations of their past, with different types of temporal comparisons occurring before and after this point. Although comparisons with past selves after onset supported the suggestion that people may select and construct their past in such a manner that permits them to see their present circumstances more positively and envisage a better future, comparisons with past selves before onset were more negative. The findings suggest that the Theory of Temporal Self-Appraisals (Ross I Wilson, 2000) needs to be elaborated to include people who have experienced major life changes. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.
Resumo:
The validity of load estimates from intermittent, instantaneous grab sampling is dependent on adequate spatial coverage by monitoring networks and a sampling frequency that re?ects the variability in the system under study. Catchments with a ?ashy hydrology due to surface runoff pose a particular challenge as intense short duration rainfall events may account for a signi?cant portion of the total diffuse transfer of pollution from soil to water in any hydrological year. This can also be exacerbated by the presence of strong background pollution signals from point sources during low flows. In this paper, a range of sampling methodologies and load estimation techniques are applied to phosphorus data from such a surface water dominated river system, instrumented at three sub-catchments (ranging from 3 to 5 km2 in area) with near-continuous monitoring stations. Systematic and Monte Carlo approaches were applied to simulate grab sampling using multiple strategies and to calculate an estimated load, Le based on established load estimation methods. Comparison with the actual load, Lt, revealed signi?cant average underestimation, of up to 60%, and high variability for all feasible sampling approaches. Further analysis of the time series provides an insight into these observations; revealing peak frequencies and power-law scaling in the distributions of P concentration, discharge and load associated with surface runoff and background transfers. Results indicate that only near-continuous monitoring that re?ects the rapid temporal changes in these river systems is adequate for comparative monitoring and evaluation purposes. While the implications of this analysis may be more tenable to small scale ?ashy systems, this represents an appropriate scale in terms of evaluating catchment mitigation strategies such as agri-environmental policies for managing diffuse P transfers in complex landscapes.
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
In recent years, the concept of a composite performance index, brought from economic and business statistics, has gained popularity in the field of road safety. The construction of the Composite Safety Performance Index (CSPI) involves the following key steps: the selection of the most appropriate indicators to be aggregated and the method used to aggregate them.
Over the last decade, various aggregation methods for estimating the CSPI have been suggested in the literature. However, recent studies indicates that most of these methods suffer from many deficiencies at both the theoretical and operational level; these include the correlation and compensability between indicators, as well as their high “degree of freedom” which enables one to readily manipulate them to produce desired outcomes.
The purpose of this study is to introduce an alternative aggregation method for the estimation of the CSPI, which is free from the aforementioned deficiencies. In contrast with the current aggregation methods, which generally use linear combinations of road safety indicators to estimate a CSPI, the approach advocated in this study is based on non-linear combinations of indicators and can be summarized into the following two main steps: the pairwise comparison of road safety indicators and the development of marginal and composite road safety performance functions. The introduced method has been successfully applied to identify and rank temporal and spatial hotspots for Northern Ireland, using road traffic collision data recorded in the UK STATs19 database. The obtained results highlight the promising features of the proposed approach including its stability and consistency, which enables significantly reduced deficiencies associated with the current aggregation methods. Progressively, the introduced method could evolve into an intelligent support system for road safety assessment.
Resumo:
Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.
Resumo:
Aim: Impacts of invasive species may vary across invasion gradients, owing to trait-based sorting of individuals through dispersal: those aggregating at invasion fronts may be more aggressive and voracious. We examine, in the field and laboratory, variation in the predatory impacts of an invasive Ponto-Caspian crustacean Hemimysis anomala G.O. Sars, 1907 at two sites along a spatio-temporal gradient of invasion.
Location: Republic of Ireland.
Methods: We used reciprocal transplant field-deployed mesocosms to compare predation rates of invasion front and well-established H. anomala on natural zooplankton assemblages. In the laboratory, we measured the functional response (relationship between predation rate and prey supply) of H. anomala from both sites, for a per capita mechanistic comparison of predation efficiency. We also assessed prey selectivity of H. anomala in the mesocosm experiments to further compare feeding behaviour. Finally, we used a correlative approach to assess the community impact of H. anomala across sites, including a nearby uninvaded site, by comparing zooplankton diversities and densities.
Results: Invasion front H. anomala had higher predation rates than well-established H. anomala at high in situ zooplankton densities. Invasion front H. anomala also had higher functional responses - in particular showing higher 'attack rates' - indicating a heightened ability to locate and capture prey. Prey selectivity was consistent across the spatio-temporal contrast, with positive selection for cladocerans. Zooplankton diversity and density declined with time since H. anomala invasion, both being maximal at the uninvaded site.
Main conclusions: Our study, for the first time, (1) reveals differences in predatory per capita effects and associated behavioural traits between two sites along a spatio-temporal invasion gradient and (2) shows a negative community-level impact of the invasive H. anomala in natural water bodies. Further spatio-temporal comparisons of predatory per capita effects of invaders are needed to assess the generality of these results.
Resumo:
A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.