3 resultados para tachycardia induced cardiomyopathy

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whilst the decision regarding defibrillator implantation in a patient with a familial sudden cardiac death syndrome is likely to be most significant for any particular individual, the clinical decision-making process itself is complex and requires interpretation and extrapolation of information from a number of different sources. This document provides recommendations for adult patients with the congenital Long QT syndromes, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy. Although these specific conditions differ in terms of clinical features and prognosis, it is possible and logical to take an approach to determining a threshold for implantable cardioveter-defibrillator implantation that is common to all of the familial sudden cardiac death syndromes based on estimates of absolute risk of sudden death. Published on behalf of the European Society of Cardiology. © The Author 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine the effect of maternal type 1 diabetes on the structure and function of the embryonic and neonatal mouse heart.

Methods: Type 1 diabetes was induced in female C57BL6/J mice using streptozotocin. Embryonic (n = 105) and neonatal hearts (n = 46) were examined using high-frequency ultrasound (US) and a cohort of E18.5 (n = 34) and 1-day-old pup hearts (n = 27) underwent histological examination.

Results: Global cardiac hypertrophy in late gestation (E18.5) was evident on US in the diabetic group compared to controls with increased interventricular septal (IVS) thickness (0.44 ± 0.08 mm vs 0.36 ± 0.08 mm, P < .05) and increased left ventricular wall thickness (0.38 ± 0.04 mm vs 0.29 mm ± 0.05, P < .01). Isovolumetric relaxation time was initially prolonged in the diabetic group but resolved by E18.5 to control values. Histological examination at E18.5 demonstrated increased transverse measurements (2.42 ± 0.72 mm/g vs 1.86 ± 0.55 mm/g, P < .05) and increased IVS thickness (0.64 ± 0.20 mm/g vs 0.43 ± 0.15 mm/g, P < .05) in diabetic embryos compared to control embryos.

Conclusion: Maternal hyperglycemia has severe effects on offspring with evidence of cardiac impairment and cardiac hypertrophy in the embryo. These effects persisted in the 1-day old but attenuated in the 1-week old suggesting cardiac remodeling after the hyperglycemic milieu of pregnancy is removed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To investigate cardiomyopathy in offspring in a mouse model of pregestational type 1 diabetic pregnancy.

METHODS: Pregestational diabetes was induced with STZ administration in female C57BL6/J mice that were subsequently mated with healthy C57BL6/J males. Offspring were sacrificed at embryonic day 18.5 and 6-week adolescent and 12-week adult stages. The size and number of cardiomyocyte nuclei and also the extent of collagen deposition within the hearts of diabetic and control offspring were assessed following cardiac tissue staining with either haematoxylin and eosin or Picrosirius red and subsequently quantified using automated digital image analysis.

RESULTS: Offspring from diabetic mice at embryonic day 18.5 had a significantly higher number of cardiomyocyte nuclei present compared to controls. These nuclei were also significantly smaller than controls. Collagen deposition was shown to be significantly increased in the hearts of diabetic offspring at the same age. No significant differences were found between the groups at 6 and 12 weeks.

CONCLUSIONS: Our results from offspring of type 1 diabetic mice show increased myocardial collagen deposition in late gestation and have increased myocardial nuclear counts (hyperplasia) as opposed to increased myocardial nuclear size (hypertrophy) in late gestation. These changes normalize postpartum after removal from the maternal intrauterine environment.