50 resultados para support vector regression

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new hierarchical learning structure, namely the holistic triple learning (HTL), for extending the binary support vector machine (SVM) to multi-classification problems. For an N-class problem, a HTL constructs a decision tree up to a depth of A leaf node of the decision tree is allowed to be placed with a holistic triple learning unit whose generalisation abilities are assessed and approved. Meanwhile, the remaining nodes in the decision tree each accommodate a standard binary SVM classifier. The holistic triple classifier is a regression model trained on three classes, whose training algorithm is originated from a recently proposed implementation technique, namely the least-squares support vector machine (LS-SVM). A major novelty with the holistic triple classifier is the reduced number of support vectors in the solution. For the resultant HTL-SVM, an upper bound of the generalisation error can be obtained. The time complexity of training the HTL-SVM is analysed, and is shown to be comparable to that of training the one-versus-one (1-vs.-1) SVM, particularly on small-scale datasets. Empirical studies show that the proposed HTL-SVM achieves competitive classification accuracy with a reduced number of support vectors compared to the popular 1-vs-1 alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several other SVM classifiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a promising method for pattern recognition and function estimation, least squares support vector machines (LS-SVM) express the training in terms of solving a linear system instead of a quadratic programming problem as for conventional support vector machines (SVM). In this paper, by using the information provided by the equality constraint, we transform the minimization problem with a single equality constraint in LS-SVM into an unconstrained minimization problem, then propose reduced formulations for LS-SVM. By introducing this transformation, the times of using conjugate gradient (CG) method, which is a greatly time-consuming step in obtaining the numerical solution, are reduced to one instead of two as proposed by Suykens et al. (1999). The comparison on computational speed of our method with the CG method proposed by Suykens et al. and the first order and second order SMO methods on several benchmark data sets shows a reduction of training time by up to 44%. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support vector machines (SVMs), though accurate, are not preferred in applications requiring high classification speed or when deployed in systems of limited computational resources, due to the large number of support vectors involved in the model. To overcome this problem we have devised a primal SVM method with the following properties: (1) it solves for the SVM representation without the need to invoke the representer theorem, (2) forward and backward selections are combined to approach the final globally optimal solution, and (3) a criterion is introduced for identification of support vectors leading to a much reduced support vector set. In addition to introducing this method the paper analyzes the complexity of the algorithm and presents test results on three public benchmark problems and a human activity recognition application. These applications demonstrate the effectiveness and efficiency of the proposed algorithm.


--------------------------------------------------------------------------------

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In semiconductor fabrication processes, effective management of maintenance operations is fundamental to decrease costs associated with failures and downtime. Predictive Maintenance (PdM) approaches, based on statistical methods and historical data, are becoming popular for their predictive capabilities and low (potentially zero) added costs. We present here a PdM module based on Support Vector Machines for prediction of integral type faults, that is, the kind of failures that happen due to machine usage and stress of equipment parts. The proposed module may also be employed as a health factor indicator. The module has been applied to a frequent maintenance problem in semiconductor manufacturing industry, namely the breaking of the filament in the ion-source of ion-implantation tools. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinopathy of prematurity (ROP) is a rare disease in which retinal blood vessels of premature infants fail to develop normally, and is one of the major causes of childhood blindness throughout the world. The Discrete Conditional Phase-type (DC-Ph) model consists of two components, the conditional component measuring the inter-relationships between covariates and the survival component which models the survival distribution using a Coxian phase-type distribution. This paper expands the DC-Ph models by introducing a support vector machine (SVM), in the role of the conditional component. The SVM is capable of classifying multiple outcomes and is used to identify the infant's risk of developing ROP. Class imbalance makes predicting rare events difficult. A new class decomposition technique, which deals with the problem of multiclass imbalance, is introduced. Based on the SVM classification, the length of stay in the neonatal ward is modelled using a 5, 8 or 9 phase Coxian distribution.