55 resultados para structure formation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, a phase-field model is developed to simulate the formation and evolution of lamellar microstructure in γ-TiAl alloys. The mechanism of formation of TiAl lamellae proposed by Denquin and Naka is incorporated into the model. The model describes the formation and evolution of the face-centered cubic (fcc) stacking lamellar zone followed by the subsequent appearance and growth of the γ-phase, involving both the chemical composition change by atom transfer and the ordering of the fcc lattice. The thermodynamics of the model system and the interaction between the displacive and diffusional transformations are described by a non-equilibrium free energy formulated as a function of concentration and structural order parameter fields. The long-range elastic interactions, arising from the lattice misfit between the α, fcc (A1) and the various orientation variants of the γ-phase are taken into account by incorporating of the elastic strain energy into the total free energy. Simulation studies based on the model successfully predicted some essential features of the lamellar structure. It is found that the formation and evolution of the lamellar structure are predominantly controlled by the minimization of the elastic energy of the interfaces between the different fcc stacking groups, low-symmetry product phase γ and the high-symmetry α-phase, as well as between the various orientation variants of the product phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A computational approach to predict the thermodynamics for forming a variety of imidazolium-based salts and ionic liquids from typical starting materials is described. The gas-phase proton and methyl cation acidities of several protonating and methylating agents, as well as the proton and methyl cation affinities of many important methyl-, nitro-, and cyano- substituted imidazoles, have been calculated reliably by using the computationally feasible DFT (B3LYP) and MP2 (extrapolated to the complete basis set limit) methods. These accurately calculated proton and methyl cation affinities of neutrals and anions are used in conjunction with an empirical approach based on molecular volumes to estimate the lattice enthalpies and entropies of ionic liquids, organic solids, and organic liquids. These quantities were used to construct a thermodynamic cycle for salt formation to reliably predict the ability to synthesize a variety of salts including ones with potentially high energetic densities. An adjustment of the gas phase thermodynamic cycle to account for solid- and liquid-phase chemistries provides the best overall assessment of salt formation and stability. This has been applied to imidazoles (the cation to be formed) with alkyl, nitro, and cyano substituents. The proton and methyl cation donors studied were as follows: HCl, HBr, HI, (HO)(2)SO2, HSO3CF3 (TfOH), and HSO3(C6H4)CH3 (TsOH); CH3Cl, CH3Br, CH3I, (CH3O)(2)SO2, CH3SO3CF3 (TfOCH3) and CH3SO3(C6H4)CH3 (TsOCH3). As substitution of the cation with electron-withdrawing groups increases, the triflate reagents appear to be the best overall choice as protonating and methylating agents. Even stronger alkylating agents should be considered to enhance the chances of synthetic success. When using the enthalpies of reaction for the gas-phase reactants (eq 6) to form a salt, a cutoff value of - 13 kcal mol(-1) or lower (more negative) should be used as the minimum value for predicting whether a salt can be synthesized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The SERS spectra of adenine recorded under a broad range of pH values and concentrations using both silver and gold colloids provided evidence for the existence of several distinct species. At high concentration (0.5-10 ppm), the spectra recorded between pH 1 and 11 showed only two distinct spectra, rather than the three forms that would be expected for a compound with two pK(a) values of 4.2 and 9.8. The spectra at neutral and alkaline pH were identical and assigned to the deprotonated form of adenine on the basis of DFT calculations, isotope shifts, and comparison with the normal Raman spectra of neutral and deprotonated adenine. The spectra at acidic pH were different, consistent with adenine protonation. Neutral adenine was not detected at any pH studied. At low adenine concentration (