7 resultados para structural breaks
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this paper, we extend the heterogeneous panel data stationarity test of Hadri [Econometrics Journal, Vol. 3 (2000) pp. 148–161] to the cases where breaks are taken into account. Four models with different patterns of breaks under the null hypothesis are specified. Two of the models have been already proposed by Carrion-i-Silvestre et al.[Econometrics Journal,Vol. 8 (2005) pp. 159–175]. The moments of the statistics corresponding to the four models are derived in closed form via characteristic functions.We also provide the exact moments of a modified statistic that do not asymptotically depend on the location of the break point under the null hypothesis. The cases where the break point is unknown are also considered. For the model with breaks in the level and no time trend and for the model with breaks in the level and in the time trend, Carrion-i-Silvestre et al. [Econometrics Journal, Vol. 8 (2005) pp. 159–175]showed that the number of breaks and their positions may be allowed to differ acrossindividuals for cases with known and unknown breaks. Their results can easily be extended to the proposed modified statistic. The asymptotic distributions of all the statistics proposed are derived under the null hypothesis and are shown to be normally distributed. We show by simulations that our suggested tests have in general good performance in finite samples except the modified test. In an empirical application to the consumer prices of 22 OECD countries during the period from 1953 to 2003, we found evidence of stationarity once a structural break and cross-sectional dependence are accommodated.
Resumo:
In recent years, the issue of life expectancy has become of upmost importance to pension providers, insurance companies and the government bodies in the developed world. Significant and consistent improvements in mortality rates and, hence, life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data in order to anticipate future life expectancy and, hence, quantify the costs of providing for future aging populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age and cohort, and forecast these trends into the future using standard statistical methods. The modeling approaches used failed to capture the effects of any structural change in the trend and, thus, potentially produced incorrect forecasts of future mortality rates. In this paper, we look at a range of leading stochastic models of mortality and test for structural breaks in the trend time series.
Resumo:
In recent years, the issue of life expectancy has become of utmost importance to pension providers, insurance companies, and government bodies in the developed world. Significant and consistent improvements in mortality rates and hence life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data to anticipate future life expectancy and hence quantify the costs of providing for future aging populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age, and cohort and forecast these trends into the future by using standard statistical methods. These approaches rely on the assumption that structural breaks in the trend do not exist or do not have a significant impact on the mortality forecasts. Recent literature has started to question this assumption. In this paper, we carry out a comprehensive investigation of the presence or of structural breaks in a selection of leading mortality models. We find that structural breaks are present in the majority of cases. In particular, we find that allowing for structural break, where present, improves the forecast result significantly.
Resumo:
In this paper, we re-examine two important aspects of the dynamics of relative primary commodity prices, namely the secular trend and the short run volatility. To do so, we employ 25 series, some of them starting as far back as 1650 and powerful panel data stationarity tests that allow for endogenous multiple structural breaks. Results show that all the series are stationary after allowing for endogenous multiple breaks. Test results on the Prebisch–Singer hypothesis, which states that relative commodity prices follow a downward secular trend, are mixed but with a majority of series showing negative trends. We also make a first attempt at identifying the potential drivers of the structural breaks. We end by investigating the dynamics of the volatility of the 25 relative primary commodity prices also allowing for endogenous multiple breaks. We describe the often time-varying volatility in commodity prices and show that it has increased in recent years.
Much Ado About Nothing: The Limitation of Liability and the Market for 19th century Irish Bank Stock
Resumo:
Abstract Limited liability is widely believed to be a prerequisite for the emergence of an active and liquid securities market because the transactions costs associated with trading ownership of unlimited liability firms are viewed as prohibitive. In this article, we examine the trading of shares in an Irish bank, which limited its liability in 1883. Using this bank’s archives, we assemble a time series of trading data, which we test for structural breaks. Our results suggest that the move to limited liability had a negligible impact upon the trading of this bank’s shares.
Resumo:
The area of mortality modelling has received significant attention over the last 20 years owing to the need to quantify and forecast improving mortality rates. This need is driven primarily by the concern of governments, professionals, insurance and actuarial professionals and individuals to be able to fund their old age. In particular, to quantify the costs of increasing longevity we need suitable model of mortality rates that capture the dynamics of the data and forecast them with sufficient accuracy to make them useful. In this paper we test several of those models by considering the fitting quality and in particular, testing the residuals of those models for normality properties. In a wide ranging study considering 30 countries we find that almost exclusively the residuals do not demonstrate normality. Further, in Hurst tests of the residuals we find evidence that structure remains that is not captured by the models.
Resumo:
Predicting life expectancy has become of upmost importance in society. Pension providers, insurance companies, government bodies and individuals in the developed world have a vested interest in understanding how long people will live for. This desire to better understand life expectancy has resulted in an explosion of stochastic mortality models many of which identify linear trends in mortality rates by time. In making use of such models for forecasting purposes we rely on the assumption that the direction of the linear trend (determined from the data used for fitting purposes) will not change in the future, recent literature has started to question this assumption. In this paper we carry out a comprehensive investigation of these types of models using male and female data from 30 countries and using the theory of structural breaks to identify changes in the extracted trends by time. We find that structural breaks are present in a substantial number of cases, that they are more prevalent in male data than in female data, that the introduction of additional period factors into the model reduces their presence, and that allowing for changes in the trend improves the fit and forecast substantially.