36 resultados para stimulus classes

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a speed-matching task, we measured the speed tuning of the dynamic motion aftereVect (MAE). The results of our Wrst experiment, in which we co-varied dot speed in the adaptation and test stimuli, revealed a speed tuning function. We sought to tease apart what contribution, if any, the test stimulus makes towards the observed speed tuning. This was examined by independently manipulating dot speed in the adaptation and test stimuli, and measuring the eVect this had on the perceived speed of the dynamic MAE. The results revealed that the speed tuning of the dynamic MAE is determined, not by the speed of the adaptation stimulus, but by the local motion characteristics of the dynamic test stimulus. The role of the test stimulus in determining the perceived speed of the dynamic MAE was conWrmed by showing that, if one uses a test stimulus containing two sources of local speed information, observers report seeing a transparent MAE; this is despite the fact that adaptation is induced using a single-speed stimulus. Thus while the adaptation stimulus necessarily determines perceived direction of the dynamic MAE, its perceived speed is determined by the test stimulus. This dissociation of speed and direction supports the notion that the processing of these two visual attributes may be partially independent.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin secretion of the North American pickerel frog (Rana palustris) has long been known to have pronounced noxious/toxic properties and to be highly effective in defence against predators and against other sympatric amphibians. As it consists largely of a complex mixture of peptides, it has been subjected to systematic peptidomic study but there has been little focus on molecular cloning of peptide-encoding cDNAs and by deduction, the biosynthetic precursors that they encode. Here, we demonstrate that the cDNAs encoding the five major structural families of antimicrobial peptides can be elucidated by a single step “shotgun” cloning approach using a cDNA library constructed from the source material of the peptidomic studies—the defensive skin secretion itself. Using a degenerate primer pool designed to a highly conserved nucleic acid sequence 5' to the initiation codon of known antimicrobial peptide precursor transcripts, we amplified cDNA sequences representing five major classes of antimicrobial peptides, such as esculentins, brevinins, ranatuerins, palustrins and temporins. Bioinformatic comparisons of precursor open-reading frames and nucleic acid sequences revealed high degrees of structural similarities between analogous peptides of R. palustris and the Chinese bamboo odorous frog, Rana versabilis. This approach thus constitutes a robust technique that can be used either alone or ideally, in parallel with peptidomic analysis of skin secretion, to rapidly extract primary structural information on amphibian skin secretion peptides and their biosynthetic precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speedup provided by quantum algorithms with respect to their classical counterparts is at the origin of scientific interest in quantum computation. However, the fundamental reasons for such a speedup are not yet completely understood and deserve further attention. In this context, the classical simulation of quantum algorithms is a useful tool that can help us in gaining insight. Starting from the study of general conditions for classical simulation, we highlight several important differences between two nonequivalent classes of quantum algorithms. We investigate their performance under realistic conditions by quantitatively studying their resilience with respect to static noise. This latter refers to errors affecting the initial preparation of the register used to run an algorithm. We also compare the evolution of the entanglement involved in the different computational processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. It has been argued that the threshold for detecting frequency-doubling (FD) technology perimeter stimuli differs from the threshold for perceiving spatial structure (pattern) in the same targets. Thresholds for perceiving spatial structure have typically been assessed using orientation-identification experiments. The authors investigated the influence of orientation, edge profile, and psychophysical method on the origin of the reported differences in detection and orientation-identification thresholds for FD gratings.

METHODS. Detection and orientation-identification thresholds were determined in 12 observers with the use of FD stimuli (0.25 cyc/deg, 25 Hz) presented centrally and at 15° eccentricity. Edge profile (square- and Gaussian-windowed) and orientation (horizontal, vertical, and oblique) were independently modified. Detection thresholds were also measured for spatially uniform flickering targets (25 Hz). Orientation-identification thresholds using a two-alternative forced choice (2-AFC) and a two-interval forced choice (2-IFC) method were also compared in five experienced observers.

RESULTS. Orientation-identification and detection thresholds did not significantly differ under any condition tested. Orientation-identification thresholds obtained with 2-AFC were not significantly different from those obtained with 2-IFC. Thresholds for spatially uniform flicker were significantly lower than for FD stimuli.

CONCLUSIONS. The authors found that orientation-identification and detection thresholds for FD gratings did not differ and argue that recent findings to the contrary arise from the inappropriate use of spatially uniform flicker targets as alternatives in 2-IFC experiments.