3 resultados para stimulated Raman adiabatic passage

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the stimulated Raman transition between two long-lived states via multiple intermediate states, such as between hyperfine ground states in the alkali-metal atoms. We present a concise treatment of the general, multilevel, off-resonant case, and we show how the lightshift emerges naturally in this approach. We illustrate our results by application to alkali-metal atoms and we make specific reference to cesium. We comment on some artifacts, due solely to the geometrical overlap of states, which are relevant to existing experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple theoretical model is proposed for the interaction between two counter-propagating laser pulses (a pump and a seed pulse) in unmagnetized plasma. Pulse compression and amplification are observed via numerical simulation. A one dimensional fluid model for stimulated Raman backscattering is proposed to investigate the pulse compression and pulse amplification mechanisms. To accomplish this, energy is transferred from the long pump pulse to a seed pulse, with a Langmuir plasma wave mediating the transfer. The study focuses on the intensity profile of the pump laser pulse. A Gaussian and a ring intensity profile are, separately, considered for the pump laser pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps)has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in differentbeamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossedeach other in an underdense plasma in a counter-propagating geometry, off-set by 10◦. It is shown that the energy transferand the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and thecompetition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transferfrom pump to probe pulse is 2.5%, at a plasma density of 0.17ncr, and this energy transfer increases significantly withplasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above0.25ncr) are used.