39 resultados para steady tempo
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper describes the flow characteristics in the near throat region of a poppet valve under steady flow conditions. An experimental and theoretical procedure was undertaken to determine the total pressure at the assumed throat region of the valve, and also at a downstream location. Experiments of this type can be used to accurately determine the flow performance of a particular induction system. The static pressure recovery was calculated from the near throat region of the valve to the downstream location and was shown to be dependant on valve lift. Total pressure profiles suggest that for this particular induction system, the majority of pressure loss occurs downstream of the valve for lift/diameter ratios up to 0.1, and upstream of the valve for lift/diameter ratios greater than 0.1. Negligible pressure recovery was shown to exist from the cylindrical periphery of the valve head to the downstream location for all valve lifts, indicating that the flow had probably separated completely from the trailing edge of the valve seating face. The calculated discharge coefficients, based on the geometric throat static pressure measurements on the seating face, were in general less than those determined using the downstream static pressure, by as much as 12% in some instances towards the valves lower mass flow rate range.
Resumo:
Rimming flow on the inner surface of a horizontal rotating cylinder is investigated. Using a scale analysis, a theoretical description is obtained for steady-state non-Newtonian flow. Simple lubrication theory is applied since the Reynolds number is small and the liquid film is thin. Since the Deborah number is very small the flow is viscometric. The shear-thinning number, which characterizes the shear-thinning effect, may be small or large. A general constitutive law for this kind of flow requires only a single function relating shear stress and shear rate that corresponds to a generalized Newtonian liquid. For this case the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a continuous steady-state solution is proved. The rheological models, which show Newtonian behavior at low shear rates with transition to power-law shear thinning at moderate shear rates, are considered. Numerical results are carried out for the Carreau and Ellis models, which exhibit Newtonian behavior near the free surface and power-law behavior near the wall of the rotating cylinder.
Resumo:
The formation and reactivity of surface intermediates in the reverse water-gas-shift reaction on a Pt/CeO2 catalyst are critically dependent on the reaction conditions so that conclusionsregarding the reaction mechanism cannot be inferred using ex operando conditions.
Resumo:
Entanglement transfer processes from a continuous-variable (CV) to a qubit system have primary importance in quantum information processing due to some practical implications in the realization of a quantum network. A CV system can propagate entanglement while a qubit system is easy to manipulate. We study conditions to entangle two atomic qubits with a two-mode squeezed field driving two cavities containing the atoms.
Resumo:
Langerin is a C-type lectin receptor that recognizes glycosylated patterns on pathogens. Langerin is used to identify human and mouse epidermal Langerhans cells (LCs), as well as migratory LCs in the dermis and the skin draining lymph nodes (DLNs). Using a mouse model that allows conditional ablation of langerin(+) cells in vivo, together with congenic bone marrow chimeras and parabiotic mice as tools to differentiate LC- and blood-derived dendritic cells (DCs), we have revisited the origin of langerin(+) DCs in the skin DLNs. Our results show that in contrast to the current view, langerin(+)CD8(-) DCs in the skin DLNs do not derive exclusively from migratory LCs, but also include blood-borne langerin(+) DCs that transit through the dermis before reaching the DLN. The recruitment of circulating langerin(+) DCs to the skin is dependent on endothelial selectins and CCR2, whereas their recruitment to the skin DLNs requires CCR7 and is independent of CD62L. We also show that circulating langerin(+) DCs patrol the dermis in the steady state and migrate to the skin DLNs charged with skin antigens. We propose that this is an important and previously unappreciated element of immunosurveillance that needs to be taken into account in the design of novel vaccine strategies.
Steady-State Creep Analysis of Thick-Walled Spherical Pressure Vessels with Varying Creep Properties
Resumo:
The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.