44 resultados para statistical process control
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.
Resumo:
Anti-islanding protection is becoming increasingly important due to the rapid installation of distributed generation from renewable resources like wind, tidal and wave, solar PV, bio-fuels, as well as from other resources like diesel. Unintentional islanding presents a potential risk for damaging utility plants and equipment connected from the demand side, as well as to public and personnel in utility plants. This paper investigates automatic islanding detection. This is achieved by deploying a statistical process control approach for fault detection with the real-time data acquired through a wide area measurement system, which is based on Phasor Measurement Unit (PMU) technology. In particular, the principal component analysis (PCA) is used to project the data into principal component subspace and residual space, and two statistics are used to detect the occurrence of fault. Then a fault reconstruction method is used to identify the fault and its development over time. The proposed scheme has been used in a real system and the results have confirmed that the proposed method can correctly identify the fault and islanding site.
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.
Resumo:
Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.
Resumo:
This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.
Resumo:
Treasure et al. (2004) recently proposed a new sub space-monitoring technique, based on the N4SID algorithm, within the multivariate statistical process control framework. This dynamic-monitoring method requires considerably fewer variables to be analysed when compared with dynamic principal component analysis (PCA). The contribution charts and variable reconstruction, traditionally employed for static PCA, are analysed in a dynamic context. The contribution charts and variable reconstruction may be affected by the ratio of the number of retained components to the total number of analysed variables. Particular problems arise if this ratio is large and a new reconstruction chart is introduced to overcome these. The utility of such a dynamic contribution chart and variable reconstruction is shown in a simulation and by application to industrial data from a distillation unit.
Resumo:
The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.
Resumo:
This case study examines how the lean ideas behind the Toyota production system can be applied to software project management. It is a detailed investigation of the performance of a nine-person software development team employed by BBC Worldwide based in London. The data collected in 2009 involved direct observations of the development team, the kanban boards, the daily stand-up meetings, semistructured interviews with a wide variety of staff, and statistical analysis. The evidence shows that over the 12-month period, lead time to deliver software improved by 37%, consistency of delivery rose by 47%, and defects reported by customers fell 24%. The significance of this work is showing that the use of lean methods including visual management, team-based problem solving, smaller batch sizes, and statistical process control can improve software development. It also summarizes key differences between agile and lean approaches to software development. The conclusion is that the performance of the software development team was improved by adopting a lean approach. The faster delivery with a focus on creating the highest value to the customer also reduced both technical and market risks. The drawbacks are that it may not fit well with existing corporate standards.
Resumo:
Thermoforming processes generally employ sheet temperature monitoring as the primary means of process control. In this paper the development of an alternative system that monitors plug force is described. Tests using a prototype device have shown that the force record over a forming cycle creates a unique map of the process operation. Key process features such as the sheet modulus, sheet sag and the timing of the process stages may be readily observed, and the effects of changes in all of the major processing parameters are easily distinguished. Continuous, cycle-to-cycle tests show that the output is consistent and repeatable over a longer time frame, providing the opportunity for development of an on-line process control system. Further testing of the system is proposed.