77 resultados para squares

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper theoretically analysis the recently proposed "Extended Partial Least Squares" (EPLS) algorithm. After pointing out some conceptual deficiencies, a revised algorithm is introduced that covers the middle ground between Partial Least Squares and Principal Component Analysis. It maximises a covariance criterion between a cause and an effect variable set (partial least squares) and allows a complete reconstruction of the recorded data (principal component analysis). The new and conceptually simpler EPLS algorithm has successfully been applied in detecting and diagnosing various fault conditions, where the original EPLS algorithm did only offer fault detection.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a promising method for pattern recognition and function estimation, least squares support vector machines (LS-SVM) express the training in terms of solving a linear system instead of a quadratic programming problem as for conventional support vector machines (SVM). In this paper, by using the information provided by the equality constraint, we transform the minimization problem with a single equality constraint in LS-SVM into an unconstrained minimization problem, then propose reduced formulations for LS-SVM. By introducing this transformation, the times of using conjugate gradient (CG) method, which is a greatly time-consuming step in obtaining the numerical solution, are reduced to one instead of two as proposed by Suykens et al. (1999). The comparison on computational speed of our method with the CG method proposed by Suykens et al. and the first order and second order SMO methods on several benchmark data sets shows a reduction of training time by up to 44%. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a model based on partial least squares (PLS) regression for dynamic line rating (DLR). The model has been verified using data from field measurements, lab tests and outdoor experiments. Outdoor experimentation has been conducted both to verify the model predicted DLR and also to provide training data not available from field measurements, mainly heavily loaded conditions. The proposed model, unlike the direct measurement based DLR techniques, enables prediction of line rating for periods ahead of time whenever a reliable weather forecast is available. The PLS approach yields a very simple statistical model that accurately captures the physical performance of the conductor within a given environment without requiring a predetermination of parameters as required by many physical modelling techniques. Accuracy of the PLS model has been tested by predicting the conductor temperature for measurement sets other than those used for training. Being a linear model, it is straightforward to estimate the conductor ampacity for a set of predicted weather parameters. The PLS estimated ampacity has proven its accuracy through an outdoor experiment on a piece of the line conductor in real weather conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.