12 resultados para spinning fineness
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Even before the Russian air force launched its first strikes over Syria, there was already a Russian presence on the battleground. These were not the spetsnaz, Kremlin’s special forces, but war correspondents from the leading Russian media outlets. This was as clear a sign as any that the Russia’s priority has shifted from Ukraine, where these reporters spent most of the past 18 months, to Syria.
There is, however, no unanimity on Russia’s latest escalation in Syria. As Russian state TV stations report successes of Russia’s high-precision weapons projecting an image of a high-tech Russian military equal to the US, doubts persist about the latest adventure in the Middle East.
Resumo:
We have collected initial evidence that tidal interaction between a late-type star and its close-in, massive planet can lead to a spin-up of the host star. We propose to explore this further by studying a small sample of proper motion pairs in which one of the stars is orbited a Hot Jupiter. We will determine if the gyrochronal age is different for the two stars, which would indicate a tidal spin up of the planet host star. We propose to observe 3 such systems with XMM, and to perform similar Chandra observations of 3 more systems with angular separations
Resumo:
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized gas bubbles of 25–30 µm in diameter produced by a high-speed stirrer in a vessel containing dilute surfactant solution. These bubbles, because of their small size, exhibit some colloidal properties. In this work, CGAs were used to separate fine fibres from a lean slurry of cellulosic pulp in a flotation column. The pulp fibres were recovered as foamate from the top. Sodium dodecyl sulphate at a concentration of 2.0 kg/m3 was used as a surfactant to generate the CGAs in a spinning disc apparatus. The results indicated that up to 70% flotation efficiency could be obtained within a short column height of 0.3–0.35 m. This technique can be applied to recover fine cellulosic pulp from paper-machine backwater.
Resumo:
Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Novel Ag on TiO2 films are generated by semiconductor photocatalysis and characterized by ultraviolet-visible (UV/Vis) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), as well as assessed for surface-enhanced Raman scattering (SERS) activity. The nature and thickness of the photodeposited Ag, and thus the degree of SERS activity, is controlled by the time of exposure of the TiO2 film to UV light. All such films exhibit the optical characteristics (λmax ≅ 390 nm) of small (<20 nm) Ag particles, although this feature becomes less prominent as the film becomes thicker. The films comprise quite large (>40 nm) Ag islands that grow and merge with increasing levels of Ag photodeposition. Tested with a benzotriazole dye probe, the films are SERS active, exhibiting activity similar to that of 6-nm-thick vapordeposited films. The Ag/TiO2 films exhibit a lower residual standard deviation (∼25%) compared with Ag vapor-deposited films (∼45%), which is, however, still unacceptable for quantitative work. The sample-to-sample variance could be reduced significantly (<7%) by spinning the film during the SERS measurement. The Ag/TiO2 films are mechanically robust and resistant to removal and damage by scratching, unlike the Ag vapor-deposited films. The Ag/TiO2 films also exhibit no obvious loss of SERS activity when stored in the dark under otherwise ambient conditions. The possible extension of this simple, effective method of producing Ag films for SERS, to metals other than Ag and to semiconductors other than TiO2, is briefly discussed.
Resumo:
Interest in alkali-activated slag as a construction material is increasing, primarily due to its environmentally friendly nature. Although strong alkaline activators, such as sodium hydroxide and sodium silicate solution, are preferred for high strength, none of them exists naturally and their manufacturing process is quite energy intensive. Whilst sodium sulfate (NaSO ) can be obtained from natural resources, the early strength of NaSO activated slag is usually low. In this paper, the effects of slag fineness and NaSO dosage on strength, pH, hydration and microstructure were investigated and compared with those of a pure Portland cement (PC). Test results indicated that increasing the slag fineness is a more effective approach than increasing NaSO dosage for increasing both the early and long-term strength of NaSO activated slags. In addition, increasing the slag fineness can also increase the strength without increasing the pH of the hardened matrix, which is beneficial for immobilizing certain types of nuclear waste containing reactive metals and resins.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
An unusually long burst of γ-rays zapped Earth in December 2011, lasting 4 hours. The cause of this burst is now proposed to be a peculiar supernova produced by a spinning magnetic neutron star. See Letter p.189
Resumo:
We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ∼1 day after explosion show a bright and relatively fast initial peak, lasting for ∼15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal <sup>56</sup>Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ∼2 × 10<sup>52</sup> erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.
Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies
Resumo:
We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M⊙) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z⊙, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.
Resumo:
Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems.
Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars.
Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample.
Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1.
Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.
Resumo:
A new method combining electrospinning of SPEEK and direct spinning of CNT forests has been used to prepare sulfonated poly(ether ether ketone) (SPEEK)/directly spinnable carbon nanotube (dsCNT) composite proton exchange membranes. The SPEEK/dsCNT membrane is more robust than SPEEK alone, and in a fuel cell significantly outperforms both SPEEK and the commercial Nafion 212 membranes.