3 resultados para species difference

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response - the relationship between predation rate and prey supply - of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral diseases are a major factor in the decline of coral reefs worldwide, and a large proportion of studies focusing on disease causation use aquaria to control variables that affect disease occurrence and development. Public aquaria can therefore provide an invaluable resource to study the factors contributing to health and disease. In November 2010 the corals within the main display tank at the Horniman Museum and Gardens, London, UK, underwent a severe stress event due to reduced water quality, which resulted in death of a large number of coral colonies. Three separate colonies of two species of reef coral, Seritopora hystrix and Montipora capricornis showing signs of stress and acute tissue loss were removed from the display tank and placed in a research tank with improved water quality. Both coral species showed a significant difference in 16S rRNA gene bacterial diversity between healthy and stressed states (S. hystrix; ANOSIM, R=0.44, p=0.02 and M. capricornis; ANOSIM, R=0.33, p=0.01), and between the stressed state and the recovering corals. After four months the bacterial communities had returned to a similar state to that seen in healthy corals of the same species. The bacterial communities associated with the two coral species were distinct, despite them
being reared under identical environmental conditions. Despite the environmental perturbation being identical different visual signs were seen in each species and distinctly different bacterial communities associated with the stressed state occurred within them. Recovery of the visually healthy state was associated with a return of the bacterial community, within two months, to the pre-disturbance state. These observations suggest that coral-associated microbial communities are remarkably resilient and return to a very similar stable state following disturbance.