21 resultados para soil factors

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geogenic nickel (Ni), vanadium (V) and chromium (Cr) are present at elevated levels in soils in Northern Ireland. Whilst Ni, V and Cr total soil concentrations share common geological origins, their respective levels of oral bioaccessibility are influenced by different soil-geochemical factors. Oral bioaccessibility extractions were carried out on 145 soil samples overlying 9 different bedrock types to measure the bioaccessible portions of Ni, V and Cr. Principal component analysis identified two components (PC1 and PC2) accounting for 69% of variance across 13 variables from the Northern Ireland Tellus Survey geochemical data. PC1 was associated with underlying basalt bedrock, higher bioaccessible Cr concentrations and lower Ni bioaccessibility. PC2 was associated with regional variance in soil chemistry and hosted factors accounting for higher Ni and V bioaccessibility. Eight per cent of total V was solubilised by gastric extraction on average across the study area. High median proportions of bioaccessible Ni were observed in soils overlying sedimentary rock types. Whilst Cr bioaccessible fractions were low (max = 5.4%), the highest measured bioaccessible Cr concentration reached 10.0 mg kg-1, explained by factors linked to PC1 including high total Cr concentrations in soils overlying basalt bedrock.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inductively coupled plasma (ICP) following aqua regia digestion and X-ray fluorescence (XRF) are both geochemical techniques used to determine ‘total’ concentrations of elements in soil. The aim of this study is to compare these techniques, identify elements for which inconsistencies occur and investigate why they arise. A study area (∼14,000 km2) with a variety of total concentration controls and a large geochemical dataset (n = 7950) was selected. Principal component analysis determined underlying variance in a dataset composed of both geogenic and anthropogenic elements. Where inconsistencies between the techniques were identified, further numerical and spatial analysis was completed. The techniques are more consistent for elements of geogenic sources and lead, whereas other elements of anthropogenic sources show less consistency within rural samples. XRF is affected by sample matrix, while the form of element affects ICP concentrations. Depending on their use in environmental studies, different outcomes would be expected from the techniques employed, suggesting the choice of analytical technique for geochemical analyses may be more critical than realised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions: 1. Indicator values, such as those of Ellenberg, for different environmental factors are seen as independent. We tested for the presence of interactions between environmental factors ( soil moisture and reaction) to see if this assumption is simplistic. 2. How close are Ellenberg indicator values (IVs) related to the observed optima of species response curves in an area peripheral to those where they have been previously employed and 3. Can the inclusion of bryophytes add to the utility of IVs?

Location: South Uist, Outer Hebrides, Scotland, UK.

Methods: Two grids (ca. 2000 m x 2000 m) were sampled at 50-m intervals across the transition from machair to upland communities covering an orthogonal gradient of both soil pH ( reaction) and soil moisture content. Percentage cover data for vascular plants, bryophytes and lichens were recorded, along with pH and moisture content of the underlying sand/soil/peat. Reaction optima, derived from species response curves calculated using HOF models, were compared between wet and dry sites, and moisture optima between acidic and basic samples. Optima for the whole data set were compared to Ellenberg IVs to assess their performance in this area, with and without the inclusion of bryophytes.

Results: A number of species showed substantially different pH optima at high and low soil moisture contents (18% of those tested) and different soil moisture optima at high and low pH (49%). For a number of species the IVs were poor predictors of their actual distribution across the sampled area. Bryophytes were poor at explaining local variation in the environmental factors and also their inclusion with vascular plants negatively affected the strength of relationships.

Conclusions: A substantial number of species showed an interaction between soil moisture and reaction in determining their optima on the two respective gradients. It should be borne in mind that IVs such as Ellenberg's may not be independent of one another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 +/- 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 +/- 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated - baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P <0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation water only leads to a gradual increase in grain arsenic concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been recognised that dispersal abilities and environmental factors are important in shaping invertebrate communities, but their relative importance for primary soil community assembly has not yet been disentangled. By studying soil communities along chronosequences on four recently emerged nunataks (ice-free land in glacial areas) in Iceland, we replicated environmental conditions spatially at various geographical distances. This allowed us to determine the underlying factors of primary community assembly with the help of metacommunity theories that predict different levels of dispersal constraints and effects of the local environment. Comparing community assembly of the nunataks with that of non-isolated deglaciated areas indicated that isolation of a few kilometres did not affect the colonisation of the soil invertebrates. When accounting for effects of geographical distances, soil age and plant richness explained a significant part of the variance observed in the distribution of the oribatid mites and collembola communities, respectively. Furthermore, null model analyses revealed less co-occurrence than expected by chance and also convergence in the body size ratio of co-occurring oribatids, which is consistent with species sorting. Geographical distances influenced species composition, indicating that the community is also assembled by dispersal, e.g. mass effect. When all the results are linked together, they demonstrate that local environmental factors are important in structuring the soil community assembly, but are accompanied with effects of dispersal that may "override" the visible effect of the local environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal-oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC) water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluvial islands are emergent landforms which form at the interface between the permanently inundated areas of the river channel and the more stable areas of the floodplain as a result of interactions between physical river processes, wood and riparian vegetation. These highly dynamical systems are ideal to study soil structure development in the short to medium term, a process in which soil biota and plants play a substantial role. We investigated soil structure development on islands along a 40 year chronosequence within a 3 km island-braided reach of the Tagliamento River, Northeastern Italy. We used several parameters to capture different aspects of the soil structure, and measured biotic (e.g., fungal and plant root parameters) and abiotic (e.g. organic carbon) factors expected to determine the structure. We estimated models relating soil structure to its determinants, and, in order to confer statistical robustness to our results, we explicitly took into account spatial autocorrelation, which is present due to the space for time substitution inherent in the study of chronosequences and may have confounded results of previous studies. We found that, despite the eroding forces from the hydrological and geomorphological dynamics to which the system is subject, all soil structure variables significantly, and in some case greatly increased with site age. We interpret this as a macroscopic proxy for the major direct and indirect binding effects exerted by root variables and extraradical hyphae of arbuscular mycorrhizal fungi (AMF). Key soil structure parameters such as percentage of water stable aggregates (WSA) can double from the time the island landform is initiated (mean WSA = 30%) to the full 40 years (mean WSA = 64%) covered by our chronosequence. The study demonstrates the fundamental role of soil biota and plant roots in aggregating soils even in a system in which intense short to medium term physical disturbances are common.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the soil arthropod communities of urban and suburban holm oak (Quercus ilex L.) stands in a small (Siena) and a large Italian city (Naples) and tested whether the abundance and diversity of higher arthropod taxa are affected by the biotic and abiotic conditions of urban forest soils, including pollution. Acarina and Collembola were the dominant taxa in both cities. In Siena the total number of arthropod individuals collected in the samples was over 1/3 greater than in Naples, but all diversity indices scored higher in Naples than in Siena, probably in response to the higher heterogeneity of microclimatic and pedological conditions found in Naples study area. Oribatids resulted twice more abundant in Siena and so were the total mites with respect to Collembola. While “taxonomic richness” per site increased with distance from road traffic, entropy and evenness indices scored higher at the two ends of the impact gradient in both cities. The overall variation in basic pedological and microbiological soil parameters positively correlated with the total abundance of arthropods, and negatively correlated with their taxonomic richness. At the resolution employed, no significant relation emerged between anthropogenic factors, such as traffic load and soil pollution, and the arthropod fauna density and variety. These results are consistent with conclusions drawn from a previous study on the enchytraeid fauna examined at species level, which is remarkable considering the different taxonomic resolutions of the two studies. CCA results suggest that the higher abundance of Oribatid mites, Protura and Thysanura and the lower abundance of Diplopoda and Symphyla in Siena could depend on a higher fungi/bacteria ratio. This observation can be interpreted in terms of differences in fungi and bacteria between the two cities: Siena is shifted towards the fungal decomposition channel, which supports taxa such as oribatid mites, while Naples is shifted towards the bacterial channel, which supports chiefly detritivorous groups, such as diplopods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elements in grain crops such as iron, zinc and selenium are essential in the human diet, whereas elements such as arsenic are potentially toxic to humans. This study aims to identify quantitative trait loci (QTLs) for trace elements in rice grain. A field experiment was conducted in an arsenic enriched field site in Qiyang, China using the Bala x Azucena mapping population grown under standard field conditions. Grains were subjected to elemental analysis by inductively coupled plasma mass spectroscopy. QTLs were detected for the elemental composition within the rice grains, including for iron and selenium, which have previously been detected in this population grown at another location, indicating the stability of these QTLs. A correlation was observed between flowering time and a number of the element concentrations in grains, which was also revealed as co-localisation between flowering time QTLs and grain element QTLs. Unravelling the environmental conditions that influence the grain ionome appears to be complex, but from the results in this study one of the major factors which controls the accumulation of elements within the grain is flowering time.