2 resultados para sinusoidal phase modulating

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free space transmission of an on-off modulated sinusoidal signal through a phase conjugating lens (PCL) is theoretically examined using a combined time/frequency domain approach. The on-off keyed (OOK) signal is generated by a dipole antenna located in the far-field zone of the lens. The PCL consists of a dual layer of antenna elements interconnected via phase conjugating circuitry. We demonstrate that electromagnetic interference between antenna elements creates spatially localised areas of good-quality reception and zones where the signal is significantly denigrated by interference. Next, it is shown that destructive interference and packet desynchronisation effects critically depend on bit rate. It is also shown that a circular concave lens can be used to produce high-quality signal reception in a given direction while suppressing signal reception in all other directions. The effect that the bandwidth of the phase conjugating unit has on the transmitted signal properties for the cases of high and low bit rate OOK modulation are studied and a signal quality characterisation scheme is proposed which uses cross-correlation. The results of the study yields understanding of the performance of phase conjugating arrays under OOK modulation. The work suggests a novel approach for realising a secure communication wireless system.