104 resultados para silver addition

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research is progressing fast in the field of the hydrogen assisted hydrocarbon selective catalytic reduction (HC-SCR) over Ag-based catalysts: this paper is a review of the work to date in this area. The addition of hydrogen to the HC-SCR reaction feed over Ag/Al2O3 results in a remarkable improvement in NO (x) conversion using a variety of different hydrocarbon feeds. There is some debate concerning the role that hydrogen has to play in the reaction mechanism and its effect on the form of Ag present during the reaction. Many of the studies use in situ UV-Vis spectroscopy to monitor the form of Ag in the catalyst and appear to indicate that the addition of hydrogen promotes the formation of small Ag clusters which are highly reactive for NO (x) conversion. However, some authors have expressed concern about the use of this technique for these materials and further work is required to address these issues before this technique can be used to give an accurate assessment of the state of Ag during the SCR reaction. A study using in situ EXAFS to probe the H-2 assisted octane-SCR reaction has shown that small Ag particles (containing on average 3 silver atoms) are formed during the SCR reaction but that the addition of H-2 to the feed does not result in any further change in the Ag particle size. This points to the direct involvement of H-2 in the reaction mechanism. Clearly the addition of hydrogen results in a large increase in the number and variety of adsorbed species on the surface of the catalyst during the reaction. Some authors have suggested that conversion of cyanide to isocyanate is the rate-determining step and that hydrogen promotes this conversion. Others have suggested that hydrogen reduces nitrates to more reactive nitrite species which can then activate the hydrocarbon; activation of the hydrocarbon to form acetates has been proposed as the key step. It is probable that all these promotional effects can take place and that it very much depends on the reaction temperature and feed conditions as to which one is most important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the extraction of C5–C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf2N]) to form room temperature ionic liquids [Ag(olefin)x][Tf2N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf2N], 1-pentene showed the best separation performance while C7 and C8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C5 and C6, for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf2N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin)x][Tf2N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adequate silicon fertilization greatly boosts rice yield and mitigates biotic and abiotic stress, and improves grain quality through lowering the content of cadmium and inorganic arsenic. This review on silicon dynamics in rice considers recent advances in our understanding of the role of silicon in rice, and the challenges of maintaining adequate silicon fertility within rice paddy systems. Silicon is increasingly considered as an element required for optimal plant performance, particularly in rice. Plants can survive with very low silicon under laboratory/glasshouse conditions, but this is highly artificial and, thus, silicon can be considered as essential for proper plant function in its environment. Silicon is incorporated into structural components of rice cell walls were it increases cell and tissue rigidity in the plant. Structural silicon provides physical protection to plants against microbial infection and insect attack as well as reducing the quality of the tissue to the predating organisms. The abiotic benefits are due to silicon's effect on overall organ strength. This helps protect against lodging, drought stress, high temperature (through efficient maintenance of transpiration), and photosynthesis by protecting against high UV. Furthermore, silicon also protects the plant from saline stress and against a range of toxic metal stresses (arsenic, cadmium, chromium, copper, nickel and zinc). Added to this, silicon application decreases grain concentrations of various human carcinogens, in particular arsenic, antimony and cadmium. As rice is efficient at stripping bioavailable silicon from the soil, recycling of silicon rich rice straw biomass or addition of inorganic silicon fertilizer, primarily obtained from iron and steel slag, needs careful management. Silicon in the soil may be lost if the silicon-cycle, traditionally achieved via composting of rice straw and returning it to the land, is being broken. As composting of rice straw and incorporation of composted or non-composted straw back to land are resource intensive activities, these activities are declining due to population shifts from the countryside to cities. Processes that accelerate rice straw composting, therefore, need to be identified to aid more efficient use of this resource. In addition, rice genetics may help address declining available silicon in paddy soils: for example by selecting for characteristics during breeding that lead to an increased ability of roots to access recalcitrant silicon sources from soil and/or via selection for traits that aid the maintenance of a high silicon status in shoots. Recent advances in understanding the genetic regulation of silicon uptake and transport by rice plants will aid these goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[M2L3] coordination cages and linear [M2L3]infinity polymers of the rigid, bridging diphosphines bis(diphenylphosphino)acetylene (dppa) and trans-1,2-bis(diphenylphosphino)ethylene (dppet) with silver(I) salts have been investigated in the solution and solid states. Unlike flexible diphosphines, 1:1 dppa/AgX mixtures do not selectively form discrete [Ag2(diphos)2(X)2] macrocycles; instead dynamic mixtures of one-, two- and three-coordinate complexes are formed. However, 3:2 dppa/AgX ratios (X = SbF6. BF4, O3SCF3 or NO3) do lead selectively to new [M2L3] triply bridged cage complexes [Ag2(dppa)3(X)2] 1a-d (X = SbF6 a, BF4 b, O3SCF3 c, NO3 d), which do not exhibit Ag-P bond dissociation at room temperature on the NMR time scale (121 MHz). Complexes la-d were characterised by X-ray crystallography and were found to have small internal cavities, helical conformations and multiple intramolecular aromatic interactions. The nucleophilicity of the anion subtly influences the cage shape: Increasing nucleophilicity from SbF6 (1a) through BF4 (1b) and O3SCF3 (1c) to NO3 (1d) increases the pyramidal distortion at the AgP3 centres, stretching the cage framework (with Ag...Ag distances increasing from 5.48 in 1a to 6.21 A in 1d) and giving thinner internal cavities. Crystal packing strongly affected the size of the helical twist angle, and no correlation between this parameter and the Ag-Ag distance was observed. When crystalline 1c was stored in its supernatant for 16 weeks, conversion occured to the isostoichiometric [M2L3]infinity coordination polymer [Ag(dppa)2Ag(dppa)(O3SCF3)2]infinity (1c'). X-ray crystallography revealed a structure with ten-membered Ag2(dppa)2 rings linked into infinite one-dimensional chains by a third dppa unit. The clear structural relationship between this polymer and the precursor cage 1c suggests a novel example of ring-opening polymerisation. With dppet, evidence for discrete [M2L3] cages was also found in solution, although 31P NMR spectroscopy suggested some Ag-P bond dissociation. On crystallisation, only the corresponding ring-opened polymeric structures [M2L3]infinity could be obtained. This may be because the greater steric bulk of dppet versus dppa destabilises the cage and favours the ring-opening polymerisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon polaritons (SPPs) are excited with light of wavelength lambda (1) = 632.8 nm on or near a gentle Ag/Ag step structure using focused beam, prism coupling and detected using a bare, sharpened fibre tip. The tip-sample separation is controlled by means of an evanescent optical field at wavelength lambda (2) = 543.5 nm in a photon scanning tunnelling microscope (PSTM). The SPP propagation properties are first characterised on both the thin and thick sections of the Ag film structure either side of the step, both macroscopically, using attenuated total reflection, and microscopically from the PSTM images; the two techniques yield very good agreement. It is found that the SPP propagation length is similar to 10-11 mum across the step in each direction (thick to thin and vice versa) as observed in the PSTM images. Thus, with reference to the propagation lengths of 14.2 and 11.7 mum for the thick and thin planar parts of the Ag film respectively, it is concluded that the SPPs negotiate the step reasonably successfully. Importantly, also, it is shown that images may be produced, displaying SPPs with either an artificially enhanced (similar to 15-20 mum) or truncated (5-8 mum) propagation length across the step. Consideration of such images leads us to suggest the possibility that the photon tunnelling occurs in a local water environment. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sulphur tolerance and thermal stability of a 2 wt% Ag/gamma-Al2O3 catalyst was investigated for the H-2-promoted SCR of NO, with octane and toluene. The aged catalyst was characterised by XRD and EXAFS analysis. It was found that the effect of ageing was a function of the gas mix and temperature of ageing. At high temperatures (800 degrees C) the catalyst deactivated regardless of the reaction mix. EXAFS analysis showed that this was associated with the Ag particles on the surface of the catalyst becoming more ordered. At 600 and 700 degrees C, the deactivating effect of ageing was much less pronounced for the catalyst in the H-2-promoted octane-SCR reaction and ageing at 600 degrees C resulted in an enhancement in activity for the reaction in the absence of H-2. For the toluene + H-2-SCR reaction the catalyst deactivated at each ageing temperature. The effect of addition of low levels of sulphur (1 ppm SO2) to the feed was very much dependent on the reaction temperature. There was little deactivation of the catalyst at low temperatures ( 500 degrees C). The results can be explained by the activity of the catalyst for the oxidation Of SO2 to SO3 and the relative stability of silver and aluminium sulphates. The catalyst could be almost fully regenerated by a combination of heating and the presence of hydrogen in the regeneration mix. The catalyst could not be regenerated in the absence of hydrogen. (c) 2006 Published by Elsevier B.V.