125 resultados para signal reconstruction

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jutland peninsula in northern Denmark is home to the Limfjord, one of the largest estuarine bodies of water in the region. Human inhabitance of the Limfjord’s surrounding coastlines stretches back further than 7,800 cal BP, with anthropogenic influence on the landscape beginning approximately 6,000 cal BP. Understanding how the Limfjord as a system has changed throughout time is useful in comprehending subsistence patterns and anthropogenic influence. This research is part of a larger project aimed at discerning subsistence patterns and environmental change in the region. Following the Younger Dryas, as the Fennoscandian ice sheet began to melt, Denmark experienced isostatic rebound, which contributed to the complex sea level history in the region. Between ice melt and isostatic rebound, the Jutland peninsula experienced many transgression and regression events. Connections to surrounding seas have shifted throughout time, with most attention focused on the western connection of the Limfjord with the North Sea, which has experienced numerous closures and subsequent re-openings throughout the Holocene. Furthermore, the Limfjord-North Sea connection has been the focal point of research because of the west to east water flow in the system, and the present day higher salinity in the west compared to the east. Little to no consideration has been paid to the influence of the Kattegat and Baltic on the Limfjord until now. A 10m sediment core was taken from Sebbersund (near Nibe, Limfjord), along the connection between the Limfjord and the Kattegat in the east to understand how the eastern part of the system has changed and differed from changes observed in the west. The Sebbersund sequence spans a majority of the Holocene, from 9600 cal BP to 1030 cal BP, determined via radiocarbon dating of terrestrial macrofossils and bulk sediment. Over this time period palaeoenvironmental conditions were reconstructed through the use of geochemical analyses (13C, 15N, C:N), physical sediment analyses, dinoflagellate cyst abundances and molluscan analyses. apart from two instances of low salinity, one at the top and one at the bottom of the core, the sequence has a strong marine signal for a majority of the Holocene. Radiocarbon dating of bulk sediment samples showed the presence of old carbon in the system, creating an age offset between 1,300 ± 200 and 2,800 ± 200 calibrated 14C years compared to the age-depth curve based on the terrestrial macrofossils. This finding, along with the strong marine influence in the system, discerned through geochemical data, dinoflagellate cyst and mollusc counts, is important for obtaining accurate radiocarbon ages in the region and stresses the importance of understanding both the marine and freshwater reservoir effects. The marine dominance in the eastern Limfjord differs from the west, which is characterized by a number of freshwater events when the North Sea connection was closed off during the Holocene. The eastern connection was open to the Kattegat throughout a large portion of the Holocene, with influx of open ocean water entering the system during periods of higher sea level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of measuring high frequency variations in temperature is described, and the need for some form of reconstruction introduced. One method of reconstructing temperature measurements is to use the signals from two thermocouples of differing diameter. Two existing methods for processing such measurements and reconstructing the higher frequency components are described. These are compared to a novel reconstruction algorithm based on a nonlinear extended Kalman filter. The performance of this filter is found to compare favorably, in a number of ways, with the existing techniques, and it is suggested that such a technique would be viable for the online reconstruction of temperatures in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel application-specific instruction set processor (ASIP) for use in the construction of modern signal processing systems is presented. This is a flexible device that can be used in the construction of array processor systems for the real-time implementation of functions such as singular-value decomposition (SVD) and QR decomposition (QRD), as well as other important matrix computations. It uses a coordinate rotation digital computer (CORDIC) module to perform arithmetic operations and several approaches are adopted to achieve high performance including pipelining of the micro-rotations, the use of parallel instructions and a dual-bus architecture. In addition, a novel method for scale factor correction is presented which only needs to be applied once at the end of the computation. This also reduces computation time and enhances performance. Methods are described which allow this processor to be used in reduced dimension (i.e., folded) array processor structures that allow tradeoffs between hardware and performance. The net result is a flexible matrix computational processing element (PE) whose functionality can be changed under program control for use in a wider range of scenarios than previous work. Details are presented of the results of a design study, which considers the application of this decomposition PE architecture in a combined SVD/QRD system and demonstrates that a combination of high performance and efficient silicon implementation are achievable. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an ab initio pseudopotential calculation, we compute Compton profiles of silicon along the (100), (110), and (111) directions, and then reconstruct the pseudo-wave-functions to regain the oscillatory behavior of the all-electron valence wave functions near the atomic cores. We study the effect that this reconstruction has on the Compton profiles and their anisotropies. We find a decrease in the magnitude of the profiles at small wave vectors and in their anisotropies. These changes bring the theoretical predictions closer to experimental results.