94 resultados para sensory nerve conduction

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxaliplatin, an effective cytotoxic treatment in combination with 5-fluorouracil for colorectal cancer, is associated with sensory, motor and autonomic neurotoxicity. Motor symptoms include hyperexcitability while autonomic effects include urinary retention, but the cause of these side-effects is unknown. We examined the effects on motor nerve function in the mouse hemidiaphragm and on the autonomic system in the vas deferens. In the mouse diaphragm, oxaliplatin (0.5 mM) induced multiple endplate potentials (EPPs) following a single stimulus, and was associated with an increase in spontaneous miniature EPP frequency. In the vas deferens, spontaneous excitatory junction potential frequency was increased after 30 min exposure to oxaliplatin; no changes in resting Ca(2+) concentration in nerve terminal varicosities were observed, and recovery after stimuli trains was unaffected.In both tissues, an oxaliplatin-induced increase in spontaneous activity was prevented by the voltage-gated Na(+) channel blocker tetrodotoxin (TTX). Carbamazepine (0.3 mM) also prevented multiple EPPs and the increase in spontaneous activity in both tissues. In diaphragm, beta-pompilidotoxin (100 microM), which slows Na(+) channel inactivation, induced multiple EPPs similar to oxaliplatin's effect. By contrast, blockers of K(+) channels (4-aminopyridine and apamin) did not replicate oxaliplatin-induced hyperexcitability in the diaphragm. The prevention of hyperexcitability by TTX blockade implies that oxaliplatin acts on nerve conduction rather than by effecting repolarisation. The similarity between beta-pompilidotoxin and oxaliplatin suggests that alteration of voltage-gated Na(+) channel kinetics is likely to underlie the acute neurotoxic actions of oxaliplatin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acetaminophen [N-acetyl-p-aminophenol (APAP)] is the most common antipyretic/analgesic medicine worldwide. If APAP is overdosed, its metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), causes liver damage. However, epidemiological evidence has associated previous use of therapeutic APAP doses with the risk of chronic obstructive pulmonary disease (COPD) and asthma. The transient receptor potential ankyrin-1 (TRPA1) channel is expressed by peptidergic primary sensory neurons. Because NAPQI, like other TRPA1 activators, is an electrophilic molecule, we hypothesized that APAP, via NAPQI, stimulates TRPA1, thus causing airway neurogenic inflammation. NAPQI selectively excites human recombinant and native (neuroblastoma cells) TRPA1. TRPA1 activation by NAPQI releases proinflammatory neuropeptides (substance P and calcitonin gene-related peptide) from sensory nerve terminals in rodent airways, thereby causing neurogenic edema and neutrophilia. Single or repeated administration of therapeutic (15-60 mg/kg) APAP doses to mice produces detectable levels of NAPQI in the lung, and increases neutrophil numbers, myeloperoxidase activity, and cytokine and chemokine levels in the airways or skin. Inflammatory responses evoked by NAPQI and APAP are abated by TRPA1 antagonism or are absent in TRPA1-deficient mice. This novel pathway, distinguished from the tissue-damaging effect of NAPQI, may contribute to the risk of COPD and asthma associated with therapeutic APAP use.-Nassini, R., Materazzi, S., Andre, E., Sartiani, L., Aldini, G., Trevisani, M., Carnini, C., Massi, D., Pedretti, P., Carini, M., Cerbai, E., Preti, D., Villetti, G., Civelli, M., Trevisan, G., Azzari, C., Stokesberry, S., Sadofsky, L., McGarvey, L., Patacchini, R., Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 24, 4904-4916 (2010). www.fasebj.org

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera as well as somatosensory nerves innervating the chest wall, diaphragm and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychological methods for treatment of dystussia, is high and modern imaging methods have revealed potential neural substrates for some features of cough in the human.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Sensory neurones from the trigeminal nerve innervate the oro-facial region and teeth. Transient receptor potential channels (TRPs) expressed by these neurones are responsible for relaying sensory information such as changes in ambient temperature, mechanical sensations and pain. Study of TRP channel expression and regulation in human sensory neurones therefore merits investigation to improve our understanding of allodynia and hyperalgesia. Objective: The objective of this study was to differentiate human dental pulp stem cells (hDPSCs) towards a neuronal phenotype (peripheral neuronal equivalents; PNEs) and employ this model to study TRP channel sensitisation. Method: hDPSCs were enriched by preferential adhesion to fibronectin, plated on coverslips (thickness 0) coated with poly-l-ornithine and laminin and then differentiated for 7 days in neurobasal A medium with additional supplementation. A whole cell patch clamp technique was used to investigate whether TRP channels on PNE membranes were modulated in the presence of nerve growth factor (NGF). PNEs were treated with NGF for 20 minutes immediately before experimentation and then stimulated for TRPA1 activity using cinnamaldehyde. Peak currents were read at 80 mV and -80 mV and compared to peak currents recorded in untreated PNEs. Data were analysed and plotted using Clampfit9 software (Molecular Devices, Sunnyvale, California, USA). Result: Results showed for the first time that pre-treatment of PNEs by NGF produced significantly larger inward and outward currents demonstrating that TRPA1 channels on PNE membranes were capable of becoming sensitised following treatment with NGF. Conclusion: Sensitisation of TRPA1 by NGF provides evidence of a mechanism for rapid neuronal sensitisation that is independent of TRPA1 gene expression

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic and localised complications after administration of local anaesthetic for dental procedures are well recognised. We present two cases of patients with trismus and sensory deficit that arose during resolution of trismus as a delayed complication of inferior alveolar nerve block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.

Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.

Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sensory neuropeptides have been suggested to play a role in the pathogenesis of a number of respiratory diseases including asthma and chronic non-productive cough.

OBJECTIVES: To investigate the action of sensory neuropeptides on airway mast cells obtained by bronchoalveolar lavage (BAL).

METHODS: BAL was performed on 23 nonasthmatic patients with cough (NAC), 11 patients with cough variant asthma (CVA) and 10 nonatopic controls. Washed lavage cells were stimulated (20 min, 37 degrees C) with calcitonin gene-related peptide (CGRP), neurokinin A (NKA) and substance P (25 and 50 micromol/L).

RESULTS: The neuropeptides tested induced histamine release in all groups studied. Only CGRP (50 micromol/L) induced significantly more histamine release from both NAC and CVA patients compared with control subjects (P = 0.038 and 0.045, respectively).

CONCLUSION: Regardless of aetiology, mast cells from patients with chronic cough appear to have an increased responsiveness to CGRP compared with controls. The results of the present study suggest that the role of CGRP in chronic cough should be further investigated.