70 resultados para sensitized photodegradation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells
Resumo:
The behavior of a model ionic liquid (IL) confined between two flat parallel walls was studied at various interwall distances using computer simulations. The results focus both on structural and dynamical properties. Mass and charge density along the confinement axis reveal a structure of layers parallel to the walls that leads to an oscillatory profile in the electrostatic potential. Orientational correlation functions indicate that cations at the interface orient tilted with respect to the surface and that any other orientational order is lost thereafter. The diffusion coefficients of the ions exhibit a maximum as a function of the confinement distance, a behavior that results from a combination of the structure of the liquid as a whole and a faster molecular motion in the vicinity of the walls. We discuss the relevance of the present results and elaborate on topics that need further attention regarding the effects of ILs in the functioning of IL-based dye-sensitized solar cells.
Resumo:
The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.
Resumo:
Cough reflex hypersensitization is a key feature in patients with troublesome cough. The clinical consequence of this hypersensitive state is typified by bouts of coughing often triggered by low threshold stimuli encountered by the patient during normal daily activities including exposure to aerosols, scents and odours, a change in air temperature and when talking or laughing. These features are often perceived by cough patients to be the most disruptive aspect of their condition and undoubtedly contribute to impaired quality of life. Patients with troublesome cough may describe a range of additional symptoms and sensations including an 'urge to cough' or the feeling of an 'itch' at the back of the throat, or a choking sensation and occasionally chest pain or breathlessness. It is uncertain if these features arise due to the processes responsible for cough reflex sensitization or as a direct consequence of the underlying cough aetiology. In an attempt to understand the clinical features of a sensitized cough reflex, the spectrum of symptoms typically described by cough patients will be reviewed and possible underlying mechanisms considered. Since an intact cough reflex is crucial to airway protection, anti-tussive treatment that attenuates the hypersensitive cough state rather than abolishing the cough reflex completely would be preferable. Identifying such agents remains a clinical, scientific and pharmacological challenge. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The photo-oxidation of water is studied in presence of UV-light (lambda
Resumo:
The photocatalytic efficiencies of laboratory made and commercial TiO2 samples were compared using a standard test reaction: the photomineralization of 4-chlorophenol (4-CP) to CO2, H2O and HCl mediated by Degussa P25 TiO2 in a batch reactor. The results show that the rate of photodegradation of 4-CP, sensitized by a sample of TiO2, shows no clear simple dependence on physical characteristics such as the degree of crystallinity, the surface area and the percentage of H2O.
Resumo:
The results of a study of the variation in photocatalytic activity of TiO2, as measured by its ability to photomineralise 4-chlorophenol, as a function of temperature used to anneal the TiO2, are reported. Heat treatment of the TiO2 leads to a marked decrease in its photocatalytic activity at annealing temperatures above 600-degrees-C. This decrease is associated with a concomitant drop in the specific surface area of the TiO2, owing to particle sintering, rather than the anatase to rutile transformation, which occurs largely at temperatures above 700-degrees-C. There is a reasonable correlation between photocatalytic activity and the surface area of the aggregate particles in the dispersions of the different heat-treated TiO2 samples.
Resumo:
The kinetics of photomineralization of 4-chlorophenol (4-CP) sensitized by Degussa P25 TiO2 in O2-saturated solution is studied as a function of the following different experimental parameters: pH, [TiO2], percentage O2 [O2], [4-CP], T, I, lambda and [KNO3]. At pH 2 and T=30-degrees-C the initial relative rate of CO2 photogeneration R(CO2) conforms to a Langmuir-Hinshelwood-type kinetic scheme and the relationship between R(CO2) and the various experimental parameters may be summarized as follows: R(CO2) = gammaK(O2)[O2](I(a))(theta)K(4-CP]0/(1 + K(O2])(1 + K(4-CP)[4-CP]0) where gamma is a proportionality constant, K(O2) = 0.044 +/- 0.005[O2]-1, theta = 0.74 +/- 0.05 and K(4-CP) = (29 +/- 3) x 10(3) dm3 mol-1. The overall activation energy for this photosystem was determined as 16 +/- 2 kJ mol-1. This work forms part of an overall characterization study in which it is proposed that the 4-CP-TiO2-O2 photosystem is adopted as a standard test system for incorporation into all future semiconductor-sensitized photomineralization studies in order to facilitate comparisons between the results of the different studies.
Resumo:
The photomineralisation of 4-chlorophenol (4-CP) sensitised by Degussa P25 TiO2 in O2-saturated solution represents a possible standard test system in semiconductor-sensitised photomineralisation studies. As part of a detailed examination of this photosystem, the results of the temporal variations in the concentrations of 4-CP, CO2, Cl- and the major organic intermediates, namely, 4-chlorocatechol (4-CC), hydroquinone (HQ), benzoquinone and 4-chlororesorcinol, are reported. The observed variations in [4-CP], [4-CC], [HQ] and [CO2] fit those predicted by a kinetic model which utilises kinetic equations with a Langmuir-Hinshelwood form and assumes that there are three major possible routes in which the photogenerated hydroxyl radicals can react with 4-CP, ie. 4-CP --> 4-CC, 4-CP --> HQ and 4-CP --> (unstable intermediate) --> CO2 and that these routes have the following probabilities of occurring: 48%, 10% and 42%.
Resumo:
The kinetics of the recovery of the photoinduced transient bleaching of colloidal CdS in the presence of different electron acceptors are examined. In the presence of the zwitterionic viologen, N,N'-dipropyl-2,2'-bipyridinium disulphonate, excitation of colloidal CdS at different flash intensities generates a series of decay profiles which are superimposed when normalized. The shape of the decay curves are as predicted by a first-order activation-controlled model for a log-normal distribution of particles sizes. In contrast, the variation in flash intensity in the presence of a second viologen, N,N'-dipropyl-4,4'-bipyridinium sulphonate, generates normalized decay traces which broaden with increasing flash intensity. This behaviour is predicted by a zero-order diffusion-controlled model for a log-normal distribution of particle radii. The photoreduction of a number of other oxidants sensitized by colloidal CdS is examined and the shape of the decay kinetics interpreted via either the first- or zero-order kinetics models. The rate constants and activation energies derived using these models are consistent with the values expected for an activation- or diffusion-controlled reaction.
Resumo:
The kinetics of photoreduction of methyl orange by ethylenediaminetetraacetic acid (EDTA) sensitized by colloidal CdS are reported as a function of [methyl orange], [O2] and [EDTA]. The results are interpreted using a reaction scheme which was proposed in an earlier paper for the same reaction sensitized by a powdered dispersion of highly crystalline CdS. An analysis of the results for the CdS colloid based on this reaction scheme shows that the rate of dye reduction by photogenerated electrons is approximately 50 times greater than the rate of oxygen reduction and the rate of scavenging of the photogenerated holes is approximately 7000 times greater than the rate of recombination. These findings are discussed in the light of similar observations reported for powdered CdS.