5 resultados para sediment deposition

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two depositional models to account for Holocene gravel-dominated beach ridges covered by dunes, occurring on the northern coast of Ireland, are considered in the light of infrared-stimulated luminescence ages of sand units within beach ridges, and 14C ages from organic horizons in dunes. A new chronostratigraphy obtained from prograded beach ridges with covering dunes at Murlough, north-east Ireland, supports a model of mesoscale alternating sediment decoupling (ASD) on the upper beach, rather than macroscale sequential sediment sourcing to account for prograded beach ridges and covering dunes. The ASD model specifies storm or fair-weather sand beach ridges forming at high-tide positions (on an annual basis at minimum), which acted as deflationary sources for landward foredune development. Only a limited number of such late-Holocene beach ridges survive in the observed prograded series. Beach ridges only survive when capped by storm-generated gravel beaches that are deposited on a mesoscale time spacing of 50–130 years. The morphodynamic shift from a dissipative beach face for dune formation to a reflective beach face for gravel capping appears to be controlled by the beach sand volume falling to a level where reflective conditions can prevail. Sediment volume entering the beach is thought to have fluctuated as a function of a forced regression associated with the falling sea level from the mid-Holocene highstand (ca. 6000 cal. yr BP) identified in north-east Ireland. The prograded beach ridges dated at ca. 3000 to 2000 cal. yr BP indicate that the Holocene highstand’s regressive phase may have lasted longer than previously specified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As/OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments. We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As?OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the ‘classical’ age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20 ± 10 years), whereas lakes in tundra settings accumulate at moderate (mean DT 70 ± 10 years) to very slow rates, (>100 yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9,000 cal BP (BP = years before AD 1950). From between c. 9,000 cal BP and c. 6,000 cal BP, sediment accumulation was relatively rapid (DT of 20 to 60 yr/cm). Accumulation slowed between c. 5,500 and c. 4,000 cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1,200 cal BP at three lakes. Our research will help inform priors in Bayesian age modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≅0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants. © 2003 Elsevier Science Ltd. All rights reserved.