62 resultados para salt rejection
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide(XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the 1092 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test ( 1 1092 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the preconceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from realworld observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non-uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side-effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright ©2007 John Wiley & Sons, Ltd.
Resumo:
The design of a quasi-optical single sideband filter, which provides more than 30 dB of isolation between the frequency bands 294-305.5 and 329.5-341.5 GHz in the TM plane at 45 degrees incidence, is described. The structure, which consists of three free-standing arrays of dipole slot elements, generates a bandpass spectral response with an insertion loss below 0.5 dB at resonance. Simulated and measured transmission coefficients in the range 250-400 GHz are shown to be in good agreement.
Resumo:
Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.
Resumo:
We compared body temperature (T-b) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T-b peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T-b of both populations increased. In addition, with increased salinity, the T-b daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T-b values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T-b variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T-b in the SFS mice. At 2.5% salinity, the difference between the mean daily T-b of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats axe forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.
Resumo:
The potential for performing cellulase-catalyzed reactions on cellulose dissolved in 1-butyl-3-methylimidazolium chloride ([bmim] Cl) has been investigated. We have carried out a systematic study on the irreversible solvent and ionic strength-induced inactivation and unfolding of cellulase from Trichoderma reesei ( E.C.#3.2.1.4). Experiments, varying both cellulase and IL solvent concentrations, have indicated that [bmim] Cl, and several other ILs, as well as dimethylacetamide-LiCl (a well-known solvent system for cellulose), inactivate cellulase under these conditions. Despite cellulase inactivity, results obtained from this study led to valuable insights into the requirements necessary for enzyme activity in IL systems. Enzyme stability was determined during urea, NaCl, and [bmim] Cl-induced denaturation observed through fluorescence spectroscopy. Protein stability of a PEG-supported cellulase in [bmim] Cl solution was investigated and increased stability/activity of the PEG-supported cellulase in both the [bmim] Cl and citrate buffer solutions were detected.
Resumo:
Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degreesC), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H...O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degreesC), the ions are discretely packed with only weak C-H...O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis( trifluoromethanesulfonyl) imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl) imide anions impart in ionic liquids.