4 resultados para run performance

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel filtration on soft gels has been employed for over 40 years for the separation, desalting and molecular weight estimation of peptides and proteins. Technical improvements have given rise to high-performance size-exclusion chromatography (HPSEC) on rigid supports, giving more rapid run times and increased resolution. Initially, these packings were more suitable for the separation of proteins than of peptides, but supports that operate in the fractionation range

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generic, parameterisable key scheduling core is presented, which can be utilised in pipelinable private-key encryption algorithms. The data encryption standard (DES) algorithm, which lends itself readily to pipelining, is utilised to exemplify this novel key scheduling method and the broader applicability of the method to other encryption algorithms is illustrated. The DES design is implemented on Xilinx Virtex FPGA technology. Utilising the novel method, a 16-stage pipelined DES design is achieved, which can run at an encryption rate of 3.87 Gbit/s. This result is among the fastest hardware implementations and is a factor 28 times faster than software implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the use of a compliant web design for improved damage tolerance in stiffener run-outs is investigated. Firstly, a numerical study that incorporates the possibility of debonding and delamination (using VCCT) is used to select a favourable compliant run-out configuration. Then, three different configurations are compared to establish the merits of the compliant design: a baseline configuration, a configuration with optimised tapering and the selected compliant configuration. The performance of these configurations, in terms of strength and damage tolerance, was compared numerically using a parametric finite element analysis. The energy release rates for debonding and delamination, for different crack lengths across the specimen width, were used for this comparison. The three configurations were subsequently manufactured and tested. In order to monitor the failure process, acoustic emission (AE) equipment was used and proved valuable in the detection and analysis of failure. The predicted failure loads, based on the energy release rates, showed good agreement with the experiments, particularly when the distribution of energy release rate across the width of the specimen was taken into account. As predicted numerically, the compliant configuration failed by debonding and showed improved damage tolerance compared to the baseline and tapered stiffener run-outs.