36 resultados para rock outcrops
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Many misconceptions exist regarding weathering in arid regions. Chief among these are assumptions that physical processes dominate and are not very effective because of a perceived lack of moisture. This chapter explores the factors that combine to make weathering in arid regions spatially and temporally complex, reflecting the range of surface microenvironmental conditions. Because of desert landscape complexity, attempts at interpreting weathered features must take into account the long-term history of rock outcrops and debris that mantle them, as most desert landscapes contain legacies of weathering forms and products, which were developed when moisture was more readily available in the past.
Resumo:
Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.
Resumo:
Weathering studies have often sought to explain features in terms of a prevailing set of environmental conditions. However, it is clear that in most present-day hot desert regions, the surface rock debris has been exposed to a range of weathering environments and processes. These different weathering conditions can arise in two ways, either from the effects of long-term climate change acting on debris that remains relatively static within the landscape or through the spatial relocation of debris from high to low altitude. Consequently, each fragment of rock may contain a unique weathering-related legacy of damage and alteration — a legacy that may greatly influence its response to present-day weathering activity. Experiments are described in which blocks of limestone, sandstone, granite and basalt are given ‘stress histories’ by subjecting them to varying numbers of heating and freezing cycles as a form of pre-treatment. These imposed stress histories act as proxies for a weathering history. Some blocks were used in a laboratory salt weathering simulation study while others underwent a 2 year field exposure trial at high, mid and low altitude sites in Death Valley, California. Weight loss and ultrasonic pulse velocity measurements suggest that blocks with stress histories deteriorate more rapidly than unstressed samples of the same rock type exposed to the same environmental conditions. Laboratory data also indicate that the result of imposing a known ‘weathering history’ on samples by pre-stressing them is an increase in the amount of fine sediment released during salt weathering over a given period of time in comparison to unstressed samples.
Resumo:
Natural dolomitic rock has been investigated in the transesterification of C-4 and C-8 triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 degrees C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production.
Resumo:
Iron and Mn redistribute in soil and saprolite during weathering. The geological weathering fronts ofcalcareous sedimentary rock were investigated by examining the bulk density, porosity, and distribution ofCa, Fe, and Mn. Core samples were taken ofsoil, saprolite, and bedrock material from both summit (HHMS-4B) and sideslope (HHMS-5A) positions on an interbedded Nolichucky shale and Maryville limestone landform in Solid Waste Storage Area 6 (SWSA-6). This is a low-level radioactive solids waste disposal site on the Dept. ofEnergy (DOE) Oak Ridge Reservation in Roane County Tennessee. This work was initiated because data about the properties of highly weathered sedimentary rock on this site were limited. The core samples were analyzed for pH, calcium carbonate equivalence (CCE), hydroxylamine-extractable (HA) Mn, and dithionite-citrate (CBD)-extractable Fe and Mn. Low pH values occurred from the soil surface down to the depth of the oxidized and leached saprolite in both cores. The CCE and HA-extractable Mn results were also influenced by the weathering that has occurred in these zones. Extractable Mn oxide was higher at a lower depth in the oxidized and leached saprolite compared with the Fe oxide, which was higher in the overlying soil solum. Amounts of Mn oxides were higher in the sideslope core (HHMS-5A) than in the summit core (HHMS-4B). Iron was more abundant in the deeper weathered summit core, but the highest value, 39.4 g kg-1, was found at 1.8 to 2.4 m in the sideslope core. The zone encompassing the oxidized and partially leached saprolite down to the unoxidized and unleached bedrock had higher densities and larger quantities of CaCO3 than the soil solum and oxidized and leached saprolite. The overlying soil and oxidized and leached saprolite had lower pH and CCE values and were higher in Fe and Mn oxides than the oxidized and unleached saprolite. The distribution of Fe and Mn is important when evaluating soil and saprolite for hazardous waste disposal site assessment.