8 resultados para riparian

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impatiens glandulifera (Himalayan balsam) is an invasive riparian plant species that can outcompete native perennials. Population genetic data on dispersal may aid in the management of invasive species, so we have developed microsatellite markers for this significant invader using an intersimple sequence repeat (ISSR)-based cloning method. Eight polymorphic markers displayed between two and five alleles, with overall levels of observed and expected heterozygosities ranging from 0.0500 to 0.7500 and from 0.1449 to 0.7692, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines those features which promote bat feeding in agricultural riparian areas and the riparian habitat associations of individual species. Activity of Nathusius' pipistrelle (Pipistrellus nathusii), common pipistrelle (Pipistrellus pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), Leisler's bat (Nyctalus leisleri), and Myotis species (Myotis sp.) were recorded, and their habitat associations both "between" and "within" riparian areas were analyzed. General feeding activity was associated with reduced agricultural intensity, riparian hedgerow provision, and habitat diversity. Significant habitat associations for P. pipistrellus were observed only within riparian areas. Myotis species and P. pygmaeus were significantly related to indices of landscape structure and riparian hedgerow across spatial scales. Myotis species were also related to lower levels of riffle flow at both scales of analysis. The importance of these variables changed significantly, however, between analysis scales. The multi-scale investigation of species-habitat associations demonstrated the necessity to consider habitat and landscape characteristics across spatial scales to derive appropriate conservation plans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The watersheds at Bear Creek, Oak Ridge, TN, have similar soil–landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular characteristics of soils and saprolite that may effect drainage and water movement in the wetlands and adjacent landscapes in one of these watersheds. A transect was run from west to east in a hydrological monitored area at the lower reaches of a watershed on Bear Creek. This transect extended from a steep side slope position across a floodplain, a terrace, and a shoulder slope. On the upland positions of the Nolichucky Shale, mass wasting, overland flow and soil creep currently inhibit soil formation on the steep side slope position where a Typic Dystrudept is present, while soil stability on the shoulder slope has resulted in the formation of a well-developed Typic Hapludult. In these soils, argillic horizons occur above C horizons on less sloping gradients in comparison to steeper slopes, which have Bw horizons over Cr (saprolite) material. A riparian wetland area occupies the floodplain section, where a Typic Endoaquept is characterized by poorly drained conditions that led to the development of redoximorphic features (mottling), gleying, organic matter accumulation, and minimal development of subsurface horizons. A thin colluvial deposit overlies a thick well developed Aquic Hapludalf that formed in alluvial sediments on the terrace position. The colluvial deposit from the adjacent shoulder slope is thought to result from soil creep and anthropogenic erosion caused by past cultivation practices. Runoff from the adjacent sloping landscape and groundwater from the adjacent wetland area perhaps contribute to the somewhat poorly drained conditions of this profile. Perched watertables occur in upland positions due to dense saprolite and clay plugging in the shallow zones of the saprolite. However, no redoximorphic features are observed in the soil on the side slope due to high runoff. Remnants of the underlying shale saprolite, which occur as small discolored zones resembling mottles, are also present. The soils in the study have a CEC of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although widespread, the ecology of the whiskered bat, Myotis mystacinus in Europe remains poorly understood. Ireland is positioned at the most western extreme of this species' range. To ascertain the ecology of M. mystacinus at its geographic range extreme, the roosting behaviour, home range and habitat use of females in a maternity roost in Ireland was investigated by radio-tracking. M. mystacinus were active in a diversity of habitats: namely, mixed woodland, riparian vegetation, arable land and rough grassland. However, only mixed woodland and riparian habitats were selected as core foraging areas. This is in contrast to a previous study from Britain where only pasture was utilised but is in agreement with data from Slovakia, where woodland was also selected, whilst riparian areas were also utilised by this species in Germany. A high degree of overlap in the foraging areas of individuals was observed. A total of seven roosts were utilised by tracked bats and roost switching behaviour was observed. We discuss our contrasting results in respect to range limitations, regional variability in landscape structure and the composition of bat communities. The present results have implications for the conservation of M. mystacinus within Ireland and other parts of its range, highlighting the need for range wide ecological studies. Regional variability in the ecology of bats related to landscape factors is an important consideration for bat conservation and therefore must be incorporated into future management plans. (C) 2012 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluvial islands are emergent landforms which form at the interface between the permanently inundated areas of the river channel and the more stable areas of the floodplain as a result of interactions between physical river processes, wood and riparian vegetation. These highly dynamical systems are ideal to study soil structure development in the short to medium term, a process in which soil biota and plants play a substantial role. We investigated soil structure development on islands along a 40 year chronosequence within a 3 km island-braided reach of the Tagliamento River, Northeastern Italy. We used several parameters to capture different aspects of the soil structure, and measured biotic (e.g., fungal and plant root parameters) and abiotic (e.g. organic carbon) factors expected to determine the structure. We estimated models relating soil structure to its determinants, and, in order to confer statistical robustness to our results, we explicitly took into account spatial autocorrelation, which is present due to the space for time substitution inherent in the study of chronosequences and may have confounded results of previous studies. We found that, despite the eroding forces from the hydrological and geomorphological dynamics to which the system is subject, all soil structure variables significantly, and in some case greatly increased with site age. We interpret this as a macroscopic proxy for the major direct and indirect binding effects exerted by root variables and extraradical hyphae of arbuscular mycorrhizal fungi (AMF). Key soil structure parameters such as percentage of water stable aggregates (WSA) can double from the time the island landform is initiated (mean WSA = 30%) to the full 40 years (mean WSA = 64%) covered by our chronosequence. The study demonstrates the fundamental role of soil biota and plant roots in aggregating soils even in a system in which intense short to medium term physical disturbances are common.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of arbuscular mycorrhizal fungi (AMF) in resisting surface flow soil erosion has never been tested experimentally. We set up a full factorial greenhouse experiment using Achillea millefolium with treatments consisting of addition of AMF inoculum and non-microbial filtrate, non-AMF inoculum and microbial filtrate, AMF inoculum and microbial filtrate, and non-AMF inoculum and non-microbial filtrate (control) which were subjected to a constant shear stress in the form of surface water flow to quantify the soil detachment rate through time. We found that soil loss can be explained by the combined effect of roots and AMF extraradical hyphae and we could disentangle the unique effect of AMF hyphal length, which significantly reduced soil loss, highlighting their potential importance in riparian systems.