176 resultados para resistant restorations

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It has been suggested that asthmatic subjects with persisting symptoms despite adequate maintenance therapy should be systematically evaluated to identify factors contributing to poor control. The aims of this study were to examine the prevalence of these factors in a cohort of sequentially referred poorly controlled asthmatics, and to determine if any factor or combination of factors predicted true therapy resistant asthma (TRA).

Methods: Patients were evaluated using a systematic evaluation protocol including induced sputum analysis, psychiatric assessment, ear, nose and throat examination, pulmonary function testing, high resolution CT scan of the thorax, and 24 hour dual probe ambulatory oesophageal pH monitoring; any identified provoking factor was treated. Asthma was managed according to BTS guidelines.

Results: Of 73 subjects who completed the assessment, 39 responded to intervention and 34 had TRA. Subjects with TRA had a greater period of instability, a higher dose of inhaled steroids at referral, more rescue steroid use, and a lower best percentage forced expiratory volume in 1 second (FEV1%). Oesophageal reflux, upper airway disease, and psychiatric morbidity were common (57%, 95%, 49%, respectively) but were not more prevalent in either group. Using multivariate logistic regression analysis, inhaled steroid dose >2000 µg BDP, previous assessment by a respiratory specialist, and initial FEV1% of <70% at referral predicted a final diagnosis of TRA.

Conclusions: In poorly controlled asthmatics there is a high prevalence of co-morbidity, identified by detailed systematic assessment, but no difference in prevalence between those who respond to intervention and those with TRA. Targeted treatment of identified co-morbidities has minimal impact on asthma related quality of life in those with therapy resistant disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(LyS(37)PAL) and N-AcGIP(LyS(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25 nmol kg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(LyS(37)PAL) or N-AcGIP(LyS37PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala(8)-substituted analogues of GLP-1, (Abu(8))GLP-1 and (Val(8) GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu(8))GLP-1 and (Val(8))GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu(8))GLP-1 and (Val(8))GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val(8))GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu(8))GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val(8))GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala(8) in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val(8))GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.