4 resultados para resistance exercise

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH-kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high-resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high-resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 +/- 112.08%, 3 h = 124.7 +/- 15.96% and 6 h = 129.2 +/- 0%) and mVps34 (3 h = 68.8 +/- 15.1% and 6 h = 36.0 +/- 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 +/- 2.29% and 3 h = 47.0 +/- 6.65%; mVps34 3 h = 24.5 +/- 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2-fold. These data suggest that, following high-resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Exercise training is considered an effective strategy to improve metabolic disease. Despite this, less is known regarding exercise training in the prevention and susceptibility of LDL subfraction oxidation, particularly in an aged population. 
Methods Eleven aged (55 ± 4 yrs) and twelve young (21 ± 2 yrs) participants were randomly separated into an experimental or control group as follows: young exercise (n = 6); young control (n = 6); aged exercise (n = 6) and aged control (n = 5). The participants assigned to the exercise groups performed 12 weeks of moderate intensity (55–65% VO2max) exercise training. Venous blood was extracted at baseline, and 48 h following 12 weeks of exercise and assayed for a range of metabolites associated with lipid composition and lipoprotein susceptibility to oxidation. 
Results Although there was no difference in the oxidation potential (time ½ max) of LDL I, II or III between groups at baseline (p > 0.05), there was an increase in time ½ max for LDL I following exercise within the aged exercise group (p < 0.05). Moreover, α-tocopherol concentration was selectively lower in the aged exercise group, compared to the young exercise at baseline. The lipid composition of LDL I, LDL II, LDL III, VLDL, HDL2, HDL3 and serum lipid hydroperoxides remained unchanged as a function of exercise training and ageing (p > 0.05). 
Conclusion The primary finding of this study demonstrates that adaptations in LDL resistance to oxidation occur following 12 weeks of exercise training in the aged, and this may be of clinical significance, as oxidation of LDL has been implicated in atherosclerosis.