25 resultados para refractive index profile

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Refractive index determination of minerals and gems often requires their immersion in fluids with the same refractive index. However, these natural materials frequently have refractive indices above the ranges of common organic solvents. Most available high refractive index immersion materials are solid at room temperature, toxic, noxious, corrosive, carcinogenic, or any combination thereof. Since the physical properties of ionic liquids can be tuned by varying the cation and/or anion, we have developed immersion fluids for mineralogical studies which are relatively benign. We report here the syntheses of a range of ionic liquids ( many novel) based on the 1-alkyl-3-methylimidazolium cation, which all have refractive indices greater than 1.4, and can be used as immersion fluids for optical mineralogy studies. We further show that for a series of ionic liquids with the same anion, the refractive indices can be adjusted by systematic changes in the cation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a reflective, gold-coated long-period grating-based sensor for the measurement of chloride ions in solution is discussed. The sensor scheme is based around a long-period fiber grating (LPG)-based Michelson interferometer where the sensor was calibrated and evaluated in the laboratory using sodium chloride solutions, over a wide range of concentrations, from 0.01 to 4.00 M. The grating response creates shifts in the spectral characteristic of the interferometer, formed using the LPG and a reflective surface on the distal end of the fiber, due to the change of refracting index of the solution surrounding it. It was found that the sensitivity of the device could be enhanced over that obtained from a bare fiber by coating the LPG-based interferometer with gold nanoparticles and the results of a cross-comparison of performance were obtained and details discussed. The approach will be explored as a basis to create a portable, low-power device, developed with the potential for installation in concrete structures to determine the ingress of chloride ions, operating through monitoring the refractive index change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Densities ([rho]) and viscosities ([eta]) of binary mixtures containing the Protic Ionic Liquid (PIL), pyrrolidinium octanoate with five molecular solvents: water, methanol, ethanol, n-butanol, and acetonitrile are determined at the atmospheric pressure as a function of the temperature and within the whole composition range. The refractive index of all mixtures (nD) is measured at 298.15†K. The excess molar volumes VE and deviation from additivity rules of viscosities [eta]E and refractive index [Delta][phi]n, of pyrrolidinium octanoate solutions were then deduced from the experimental results as well as apparent molar volumes V[phi]i, partial molar volumes and thermal expansion coefficients [alpha]p. The excess molar volumes VE are negative over the entire mole fraction range for mixture with water, acetonitrile, and methanol indicating strong hydrogen-bonding interaction for the entire mole fraction. In the case of longest carbon chain alcohols (such as ethanol and n-butanol)†+†pyrrolidinium octanoate solutions, the VE variation as a function of the composition describes an S shape. The deviation from additivity rules of viscosities is negative over the entire composition range for the acetonitrile, methanol, ethanol, and butanol, and becomes less negative with increasing temperature. Whereas, [eta]E of the {[Pyrr][C7CO2]†+†water} binary mixtures is positive in the whole mole fraction range and decreases with increasing temperature. the excess Gibbs free energies of activation of viscous flow ([Delta]G*E) for these systems were calculated. The deviation from additivity rules of refractive index [Delta][phi]n are positive over the whole composition range and approach a maximum of 0.25 in PIL mole fraction for all systems. The magnitude of deviation for [Delta][phi]n describes the following order: water†>†methanol†>†acetonitrile†>†ethanol. Results have been discussed in terms of molecular interactions and molecular structures in these binary mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of annular aperture parameters on the optical transmission through arrays of coaxial apertures in a metal film on high refractive index substrates has been investigated experimentally and numerically. It is shown that the transmission resonances are related to plasmonic crystal effects rather than frequency cutoff behavior associated with annular apertures. The role of deviations from ideal aperture shape occurring during the fabrication process has also been studied. Annular aperture arrays are often considered in many applications for achieving high optical transmission through metal films and understanding of nanofabrication tolerances are important. (C) 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At present, optical microscopy studies of minerals, especially diamonds, are hampered by the lack of available high refractive index (> 1.8) immersion fluids. We report here the syntheses and refractive indices of some 1-alkyl-3-methylimidazolium based ionic liquids containing polyhalide anions, which exhibit refractive indices between 1.6 and 2.23, and thus significantly extend the range of minerals which can be studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method to predict the densities of a range of ionic liquids from their surface tensions, and vice versa, using a surface-tension-weighted molar volume, the parachor, is reported. The parachors of ionic liquids containing 1-alkyl-3-methylimidazolium cations were determined experimentally, but were also calculated directly from their structural compositions using existing parachor contribution data for neutral compounds. The calculated and experimentally determined parachors were remarkably similar, and the latter data were subsequently employed to predict the densities and surface tensions of the investigated ionic liquids. Using a similar approach, the molar refractions of ionic liquids were determined experimentally, as well as calculated using existing molar refraction contribution data for uncharged compounds. The calculated molar refraction data were employed to predict the refractive indices of the ionic liquids from their surface tensions. The errors involved in the refractive index predictions were much higher than the analogous predictions employing the parachor, but nevertheless demonstrated the potential for developing parachor and molar refraction contribution data for ions as tools to predict ionic liquid physical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new far-field optical microscopy capable of reaching nanometer-scale resolution is developed using the in-plane image magnification by surface plasmon polaritons. This approach is based on the optical properties of a metal-dielectric interface that may provide extremely large values of the effective refractive index neff up to 103 as seen by surface polaritons, and thus the diffraction limited resolution can reach nanometer-scale values of lambda/2neff. The experimental realization of the microscope has demonstrated the optical resolution better than 60 nm at 515 nm illumination wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review the design and fabrication of thin-film composite optical waveguides (OWG) with high refractive index for sensor applications. A highly sensitive optical sensor device has been developed on the basis of thin-film, composite OWG. The thin-film OWG was deposited onto the surface of a potassium-ion-exchanged (K+) glass OWG by sputtering or spin coating (5-9 mm wide, and with tapers at both ends). By allowing an adiabatic transition of the guided light from the secondary OWG to the thin-film OWG, the electric field of the evanescent wave at the thin film was enhanced. The attenuation of the guided light in the thin film layer was small, and the guided light intensity changed sensitively with the refractive index of the cladding layer. Our experimental results demonstrate that thin-film, composite OWG gas sensors or immunosensors are much more sensitive than sensors based on other technologies. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events(1-4). Despite undisputed advantages, including spectral tunability(3), strong enhancement of the local electric field(5,6) and much better adaptability to modern nanobiotechnology architectures(7), localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts(3). Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.